Commit Graph

24 Commits

Author SHA1 Message Date
cyy
82aaf64422 [3/N] Apply py39 ruff fixes (#142115)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142115
Approved by: https://github.com/ezyang
2024-12-11 17:50:10 +00:00
Xuehai Pan
8a67daf283 [BE][Easy] enable postponed annotations in tools (#129375)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129375
Approved by: https://github.com/malfet
2024-06-29 09:23:35 +00:00
PyTorch MergeBot
a32ce5ce34 Revert "[BE][Easy] enable postponed annotations in tools (#129375)"
This reverts commit 59eb2897f1.

Reverted https://github.com/pytorch/pytorch/pull/129375 on behalf of https://github.com/huydhn due to Sorry for reverting your change but I need to revert to cleanly revert https://github.com/pytorch/pytorch/pull/129374, please do a rebase and reland this ([comment](https://github.com/pytorch/pytorch/pull/129375#issuecomment-2197800541))
2024-06-29 00:44:25 +00:00
Xuehai Pan
59eb2897f1 [BE][Easy] enable postponed annotations in tools (#129375)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129375
Approved by: https://github.com/malfet
2024-06-28 15:37:54 +00:00
Guang Yang
68cb06c752 Make gen_annotated_args support kwargs (#98396)
This PR is to address the issue seeing in PR #97417 where the newly added op requires `kwargs`, however, currently tools/autograd/gen_annotated_fn_args.py does not support `kwargs`, only `func_args` are generated for test_overrides.py.

The PR adds a new field "is_kwargs" to each argument indicating whether it's a `kwargs` or not. See example:
```
annotated_args = {
    torch._C._VariableFunctions._cast_Byte: [{'is_kwarg_only': 'False', 'name': 'self', 'simple_type': 'Tensor'}],
    ...
```

The full comparison of the generated file `annotated_fn_args.py` can be found here:
  - **Before**: [P681991116](https://www.internalfb.com/phabricator/paste/view/P681991116)
  - **After**: [P681994218](https://www.internalfb.com/intern/paste/P681994218/)

Differential Revision: D44698310

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98396
Approved by: https://github.com/ezyang
2023-04-06 19:42:26 +00:00
Huy Do
347b036350 Apply ufmt linter to all py files under tools (#81285)
With ufmt in place https://github.com/pytorch/pytorch/pull/81157, we can now use it to gradually format all files. I'm breaking this down into multiple smaller batches to avoid too many merge conflicts later on.

This batch (as copied from the current BLACK linter config):
* `tools/**/*.py`

Upcoming batchs:
* `torchgen/**/*.py`
* `torch/package/**/*.py`
* `torch/onnx/**/*.py`
* `torch/_refs/**/*.py`
* `torch/_prims/**/*.py`
* `torch/_meta_registrations.py`
* `torch/_decomp/**/*.py`
* `test/onnx/**/*.py`

Once they are all formatted, BLACK linter will be removed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/81285
Approved by: https://github.com/suo
2022-07-13 07:59:22 +00:00
anjali411
b204ad863f Revert "Revert "Allow specifying tags for aten operators in native_functions.yaml""
This reverts commit ea44645c9a.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76456

Approved by: https://github.com/osalpekar
2022-04-28 02:04:57 +00:00
Edward Yang
36420b5e8c Rename tools/codegen to torchgen (#76275)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76275

In preparation for addressing
https://github.com/pytorch/pytorch/issues/73212

Diff was generated with:

```
git mv tools/codegen torchgen
git grep -l 'tools.codegen' | xargs sed -i 's/tools.codegen/torchgen/g'
sed -i "s/\${TOOLS_PATH}\/codegen/\${TORCH_ROOT}\/torchgen/g" caffe2/CMakeLists.txt
```

and a manual edits to:

* tools/test/test_gen_backend_stubs.py
* torchgen/build.bzl
* torchgen/gen_backend_stubs.py

aka this diff:

```
 diff --git a/tools/test/test_gen_backend_stubs.py b/tools/test/test_gen_backend_stubs.py
index 3dc26c6d2d..104054575e 100644
 --- a/tools/test/test_gen_backend_stubs.py
+++ b/tools/test/test_gen_backend_stubs.py
@@ -9,7 +9,7 @@ from torchgen.gen_backend_stubs import run
 from torchgen.gen import _GLOBAL_PARSE_NATIVE_YAML_CACHE  # noqa: F401

 path = os.path.dirname(os.path.realpath(__file__))
-gen_backend_stubs_path = os.path.join(path, '../torchgen/gen_backend_stubs.py')
+gen_backend_stubs_path = os.path.join(path, '../../torchgen/gen_backend_stubs.py')

 # gen_backend_stubs.py is an integration point that is called directly by external backends.
 # The tests here are to confirm that badly formed inputs result in reasonable error messages.
 diff --git a/torchgen/build.bzl b/torchgen/build.bzl
index ed04e35a43..d00078a3cf 100644
 --- a/torchgen/build.bzl
+++ b/torchgen/build.bzl
@@ -1,6 +1,6 @@
 def define_targets(rules):
     rules.py_library(
-        name = "codegen",
+        name = "torchgen",
         srcs = rules.glob(["**/*.py"]),
         deps = [
             rules.requirement("PyYAML"),
@@ -11,6 +11,6 @@ def define_targets(rules):

     rules.py_binary(
         name = "gen",
-        srcs = [":codegen"],
+        srcs = [":torchgen"],
         visibility = ["//visibility:public"],
     )
 diff --git a/torchgen/gen_backend_stubs.py b/torchgen/gen_backend_stubs.py
index c1a672a655..beee7a15e0 100644
 --- a/torchgen/gen_backend_stubs.py
+++ b/torchgen/gen_backend_stubs.py
@@ -474,7 +474,7 @@ def run(
 ) -> None:

     # Assumes that this file lives at PYTORCH_ROOT/torchgen/gen_backend_stubs.py
-    pytorch_root = pathlib.Path(__file__).parent.parent.parent.absolute()
+    pytorch_root = pathlib.Path(__file__).parent.parent.absolute()
     template_dir = os.path.join(pytorch_root, "aten/src/ATen/templates")

     def make_file_manager(install_dir: str) -> FileManager:
```

run_all_fbandroid_tests

Test Plan: sandcastle

Reviewed By: albanD, ngimel

Differential Revision: D35770317

fbshipit-source-id: 153ac4a7fef15b1e750812a90bfafdbc8f1ebcdf
(cherry picked from commit c6d485d1d4648fa1c8a4c14c5bf3d8e899b9b4dd)
2022-04-25 01:38:06 +00:00
Edward Z. Yang
a11c1bbdd0 Run Black on all of tools/
Signed-off-by: Edward Z. Yang <ezyangfb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76089

Approved by: https://github.com/albanD
2022-04-20 17:29:41 +00:00
PyTorch MergeBot
ea44645c9a Revert "Allow specifying tags for aten operators in native_functions.yaml"
This reverts commit 1dab71ab25.

Reverted https://github.com/pytorch/pytorch/pull/72549 on behalf of https://github.com/malfet
2022-03-28 18:04:38 +00:00
anjali411
1dab71ab25 Allow specifying tags for aten operators in native_functions.yaml
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72549

Approved by: https://github.com/ezyang
2022-03-25 21:17:52 +00:00
Brian Hirsh
665c148e42 move some codegen utilities into utils.py (#63094)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63094

This PR:
- Moves `FileManager` and its dependencies (`assert_never` and other imports) to `utils.py`, and updates all of the call-sites with the fresh imports
- Passes the list of NativeFunction objects into `gen_trace_type` directly, instead of requiring the function to regenerate it (we already have it)

The purpose of the reshuffling is to avoid circular dependencies in the next PR, where I add codegen for the functionalization pass, which gets called from `gen.py` (but depends on some stuff from the autograd codegen - in partulcar, the list of view ops).

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D31942096

Pulled By: bdhirsh

fbshipit-source-id: 36118facae61f25f8922bb43ad2818c80b53504e
2021-10-28 10:49:17 -07:00
Kushashwa Ravi Shrimali
423523d8bb Alias for logsumexp to special namespace (#58838)
Summary:
See https://github.com/pytorch/pytorch/issues/50345

cc: kshitij12345 Lezcano mruberry

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58838

Reviewed By: malfet

Differential Revision: D29565033

Pulled By: mruberry

fbshipit-source-id: 9b715ea00c78f47b6f183357ee3c7d4c3abe4d01
2021-07-07 13:32:15 -07:00
Sam Estep
737d920b21 Strictly type everything in .github and tools (#59117)
Summary:
This PR greatly simplifies `mypy-strict.ini` by strictly typing everything in `.github` and `tools`, rather than picking and choosing only specific files in those two dirs. It also removes `warn_unused_ignores` from `mypy-strict.ini`, for reasons described in https://github.com/pytorch/pytorch/pull/56402#issuecomment-822743795: basically, that setting makes life more difficult depending on what libraries you have installed locally vs in CI (e.g. `ruamel`).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/59117

Test Plan:
```
flake8
mypy --config mypy-strict.ini
```

Reviewed By: malfet

Differential Revision: D28765386

Pulled By: samestep

fbshipit-source-id: 3e744e301c7a464f8a2a2428fcdbad534e231f2e
2021-06-07 14:49:36 -07:00
Brian Hirsh
9354a68e7d [codegen] split out backend-specific information from NativeFunction in the model (#57361)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57361

Data model change in the codegen, which splits backend-specific information out of `NativeFunction`

### Overview
Currently in the codegen, native_functions.yaml has backend-specific information about each operator that is encoded directly into the data model, in the `NativeFunction` object. That's reasonable, since the native_functions.yaml is the source of truth for information about an operator, and the data model encodes that information into types.

Now that external backends can use the codegen though, that information is technically incomplete/inaccurate. In another PR, I tried patching the information on the `NativeFunction` object with the additional external information, by updating the `dispatch` entry to contain the external backend kernel name and dispatch key.

Instead, this PR tries to split out that information. The `NativeFunction` class contains all information about an operator from native_functions.yaml that's backend-independent and is known never to change regardless of what extra information backends provide. We also build up a backend "index", which is basically a mapping from [backend] -> [backend-specific-metadata]. Reading in an external backend yaml just involves updating that index with the new backend.

There were a few places where `NativeFunction` used the dispatch table directly, that I encoded as properties directly on the NativeFunction object (e.g. `is_abstract`). They were mostly around whether or not the operator has a composite kernel, which isn't something that's going to change for any external backends.

This has a few advantages:
- We can more easily re-use the existing logic in `native_function.py` and `register_dispatch_key.py` for both native and external backends, since they both involve a NativeFunction + a particular backend index
- The data in the data model will be the same regardless of how the codegen is run. Running the codegen with a new external backend doesn't change the data inside of NativeFunction or an existing backend index. It just adds a new index for that backend.
- There are several of codegen areas that don't care about backend-specific information: mostly the tracing and autograd codegen. We can reason about the codegen there more easily, knowing that backend-specific info is entirely uninvolved.

An alternative to this split would be to augment the NativeFunction objects with external backend information at the time that we create them. So the external codegen could read both native_functions.yaml and the external backend's yaml at the same time, and construct a NativeObject with a full dispatch table (including the XLA entry), and the correct setting of structured (taking into account both yamls). One disadvantage to this approach is that NativeFunction objects now contain different stuff depending on how you ran the codegen, and you have to make sure that any changes to the codegen can properly handle all the different variants.

### Data Model Changes
Removed 3 classes, which are used by the external codegen:
- ExternalBackendFunction
- ExternalBackendFunctionsGroup
- ExternalBackendMetadata

And added two new ones:
- BackendIndex
- BackendMetadata

`BackendIndex` contains any info that's specific to that backend, plus a mapping from operator names to backend specific metadata about the operator. One example of backend-specific info that's not operator-dependent is the fact that XLA prefers to implement functional kernels instead of out kernels (and so when they eventually mark an op as structured, they're going to mark the functional op and not the out op).

`BackendMetadata` contains info specific to an (operator, backend) pair. Right now, that's just (a) the name of the kernel, and (b) whether or not that operator is structured.

### Questions
I wanted to get this PR up earlier so I could get feedback, but there are a few things I want to call out:

**Dealing with `structured`.**
This PR separates out the notion of `structured` into two bits of information:
- Does [operator] have a meta() function. This is backend-agnostic, and is represented by the `structured` property on `NativeFunction`, same as before. This is used, e.g., to decide what signatures to add to `MetaFunctions.h`.
- Does [operator, backend] have an impl() function. This is backend dependent; even though technically all in-tree backends are forced to write impl() functions for an operator when we port the op to structured in native_functions.yaml, out-of-tree backends can decide to opt in independently. This is represented as a property on `BackendMetadata`. This is used in most other cases, e.g. in `RegisterDispatchKey` when we're deciding whether or not to gen a structured or unstructured wrapper.

I also baked `is_structured_dispatch_key` directly into each BackendIndex. So for operators marked "structured" in native_functions.yaml, their corresponding CPU/CUDA BackendIndex entries will be marked structured, and all others (except for potentially external backends) will not.

I ended up trying to deal with `structured` in this change since it's technically backend dependent (XLA can opt kernels into structured separately from in-tree ops), but that may have been too ambitious: it's technically not relevant until we actually add support for structured external kernels. If it's not clear that this is the right path for dealing with structured and we want to push that off, I'm fine with backing out the bits of this PR that make `structured` backend-dependent. I don't see anything *too* controversial related to structured in the change, but I tried to call out any areas in the comments

**Localizing the fact that external backends follow Dispatcher convention.**
Another thing that's sort of backend specific that I didn't totally address in this PR is the fact the fact that in-tree backends follow the Native API while external backends follow the Dispatcher API. I painted over that in `native_functions.py` by adding a helper, `kernel_signature`, that takes in a native function and gives you the "correct" signature for the specified backend- NativeSignature for in-tree backends, and DispatcherSignature for out-of-tree backends. In order to make that fully useable though, we'll need `NativeSignature` and `DispatcherSignature` to have matching interfaces. I didn't bother with that in this PR, which is why `gen_external_aten_fallbacks.py` still has a bunch of direct references to the dispatcher API. Thinking of adding it in a later PR but wanted to see if anyone has other opinions.

Maybe `is_external()` shouldn't even be a property on the BackendMetadata, and anything the codegen does that requires asking for that information should just be better abstracted away.

**Thoughts on the `BackendIndex` / `BackendMetadata` breakdown.**
One thing that's annoying right now is that to query for various pieces of metadata, you call helper functions like `backend_index.structured(f)`, which queries that particular backend and tells you if that specific NativeFunctionGroup is structured for that backend. It has to return an `Optional[bool]` though, since you have to handle the case where that operator doesn't have a kernel for that backend at all. So users of those helpers end up with a bunch of optionals that they need to unpack, even if they know at some point that the result isn't None. I think it would be easier instead to just store the NativeFunction object as a field directly on the BackendMetadata. Curious if there are any other opinions on a better way to model it though.

Test Plan: Imported from OSS

Reviewed By: navahgar

Differential Revision: D28474362

Pulled By: bdhirsh

fbshipit-source-id: 41a00821acf172467d764cb41e771e096542f661
2021-05-17 12:25:35 -07:00
Sam Estep
4753100a3b Un-ignore F403 in .flake8 (#55838)
Summary:
Generally wildcard imports are bad for the reasons described here: https://www.flake8rules.com/rules/F403.html

This PR replaces wildcard imports with an explicit list of imported items where possible, and adds a `# noqa: F403` comment in the other cases (mostly re-exports in `__init__.py` files).

This is a prerequisite for https://github.com/pytorch/pytorch/issues/55816, because currently [`tools/codegen/dest/register_dispatch_key.py` simply fails if you sort its imports](https://github.com/pytorch/pytorch/actions/runs/742505908).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55838

Test Plan: CI. You can also run `flake8` locally.

Reviewed By: jbschlosser

Differential Revision: D27724232

Pulled By: samestep

fbshipit-source-id: 269fb09cb4168f8a51fd65bfaacc6cda7fb87c34
2021-04-13 09:24:07 -07:00
Heitor Schueroff
964d47dfb9 Add torch.linalg to generated annotated_args for test_overrides (#52464)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/52464

Test Plan: Imported from OSS

Reviewed By: nikithamalgifb

Differential Revision: D26618696

Pulled By: heitorschueroff

fbshipit-source-id: 9889fcaafcb307319b4526ee86355389653a6b61
2021-02-24 15:30:32 -08:00
Edward Yang
93c4f9f972 Split out RegisterDispatchKey to its own file (#51508)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51508

No substantive changes.  The codegen for this file was getting a
bit long so I moved it off into tools.codegen.dest submodule (I
wanted to do tools.codegen.gen but that conflicts with the existing
module; oy vey!)  To do this I had to move some other functions around
so that they were more generally accessible.  Otherwise
self-explanatory.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: ljk53

Differential Revision: D26187856

Pulled By: ezyang

fbshipit-source-id: fd3784571d03d01c4acb7ca589fcde4492526408
2021-02-04 09:19:32 -08:00
Edward Yang
267641a245 Rename positional and kwarg_only to have flat prefix (#49042)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49042

I want the names positional and kwarg_only to give the unflat
representation (e.g., preserving TensorOptionsArguments in the
returned Union).  So I regret my original naming choice when
I moved grouping to model.  This renames them to have flat_ prefix
and also adds a flat_non_out argument for cases where you just
want to look at non-out arguments.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: H-Huang

Differential Revision: D25455884

Pulled By: ezyang

fbshipit-source-id: f923f8881267a3e3e8e9521519412f7cc25034fc
2020-12-10 18:20:43 -08:00
Edward Yang
ba5686f8c5 Refactor argument fields in FunctionSchema to Arguments (#48182)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48182

I'm planning to add a bunch more argument fields following
https://github.com/pytorch/pytorch/pull/45890#discussion_r503646917 and
it will be a lot more convenient if the arguments get to live
in their own dedicated struct.  Type checker will tell you if
I've done it wrong.  No change to output.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: ljk53

Differential Revision: D25057897

Pulled By: ezyang

fbshipit-source-id: dd377181dad6ab0c894d19d83408b7812775a691
2020-12-02 07:57:06 -08:00
Jiakai Liu
d91cefb0d8 [pytorch][codegen] migrate gen_annotated_fn_args.py to new codegen model (#47745)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47745

This is a relatively small codegen. Reintroduced 'simple_type' to preserve
old codegen output.

It depends on some methods defined in gen_python_functions.py - next PR will
clean up the remaining Declarations.yaml methods in gen_python_functions.py.

Confirmed byte-for-byte compatible with the old codegen:
```
Run it before and after this PR:
  .jenkins/pytorch/codegen-test.sh <baseline_output_dir>
  .jenkins/pytorch/codegen-test.sh <test_output_dir>

Then run diff to compare the generated files:
  diff -Naur <baseline_output_dir> <test_output_dir>
```

Differential Revision: D24885068

Test Plan: Imported from OSS

Reviewed By: ezyang

Pulled By: ljk53

fbshipit-source-id: c0fbd726bcc450c3c7fe232c23e5b31779d0b65f
2020-11-14 02:24:39 -08:00
Jiakai Liu
d95e1afad3 [pytorch] add script to run all codegen (#46243)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46243

Add util script to test whether any codegen output changes.

Test Plan: Imported from OSS

Reviewed By: ezyang

Differential Revision: D24388873

Pulled By: ljk53

fbshipit-source-id: ef9ef7fe6067df1e0c53aba725fc13b0dfd7f4c2
2020-10-29 22:55:12 -07:00
Hameer Abbasi
3d46e02ea1 Add __torch_function__ for methods (#37091)
Summary:
According to pytorch/rfcs#3

From the goals in the RFC:

1. Support subclassing `torch.Tensor` in Python (done here)
2. Preserve `torch.Tensor` subclasses when calling `torch` functions on them (done here)
3. Use the PyTorch API with `torch.Tensor`-like objects that are _not_ `torch.Tensor`
   subclasses (done in https://github.com/pytorch/pytorch/issues/30730)
4. Preserve `torch.Tensor` subclasses when calling `torch.Tensor` methods. (done here)
5. Propagating subclass instances correctly also with operators, using
   views/slices/indexing/etc. (done here)
6. Preserve subclass attributes when using methods or views/slices/indexing. (done here)
7. A way to insert code that operates on both functions and methods uniformly
   (so we can write a single function that overrides all operators). (done here)
8. The ability to give external libraries a way to also define
   functions/methods that follow the `__torch_function__` protocol. (will be addressed in a separate PR)

This PR makes the following changes:

1. Adds the `self` argument to the arg parser.
2. Dispatches on `self` as well if `self` is not `nullptr`.
3. Adds a `torch._C.DisableTorchFunction` context manager to disable `__torch_function__`.
4. Adds a `torch::torch_function_enabled()` and `torch._C._torch_function_enabled()` to check the state of `__torch_function__`.
5. Dispatches all `torch._C.TensorBase` and `torch.Tensor` methods via `__torch_function__`.

TODO:

- [x] Sequence Methods
- [x] Docs
- [x] Tests

Closes https://github.com/pytorch/pytorch/issues/28361

Benchmarks in https://github.com/pytorch/pytorch/pull/37091#issuecomment-633657778

Pull Request resolved: https://github.com/pytorch/pytorch/pull/37091

Reviewed By: ngimel

Differential Revision: D22765678

Pulled By: ezyang

fbshipit-source-id: 53f8aa17ddb8b1108c0997f6a7aa13cb5be73de0
2020-08-05 20:44:13 -07:00
Nathan Goldbaum
1e230a5c52 rewrite C++ __torch_function__ handling to work with TensorList operands (#41575)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41575

Fixes https://github.com/pytorch/pytorch/issues/34294

This updates the C++ argument parser to correctly handle `TensorList` operands. I've also included a number of updates to the testing infrastructure, this is because we're now doing a much more careful job of testing the signatures of aten kernels, using the type information about the arguments as read in from `Declarations.yaml`. The changes to the tests are required because we're now only checking for `__torch_function__` attributes on `Tensor`, `Optional[Tensor]` and elements of `TensorList` operands, whereas before we were checking for `__torch_function__` on all operands, so the relatively simplistic approach the tests were using before -- assuming all positional arguments might be tensors -- doesn't work anymore. I now think that checking for `__torch_function__` on all operands was a mistake in the original design.

The updates to the signatures of the `lambda` functions are to handle this new, more stringent checking of signatures.

I also added override support for `torch.nn.functional.threshold` `torch.nn.functional.layer_norm`, which did not yet have python-level support.

Benchmarks are still WIP.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/34725

Reviewed By: mruberry

Differential Revision: D22357738

Pulled By: ezyang

fbshipit-source-id: 0e7f4a58517867b2e3f193a0a8390e2ed294e1f3
2020-07-17 08:54:29 -07:00