Commit Graph

275 Commits

Author SHA1 Message Date
Edward Z. Yang
47834679ba Disable complex32 meta conversion, which removes a few skips
Signed-off-by: Edward Z. Yang <ezyangfb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77854

Approved by: https://github.com/mruberry
2022-05-21 02:35:14 +00:00
Edward Z. Yang
6b273444c4 Add logit ref; allow non-refs to be called in refs.
Signed-off-by: Edward Z. Yang <ezyangfb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77816

Approved by: https://github.com/mruberry
2022-05-21 02:35:14 +00:00
Horace He
64b4bb4b01 Fix meta tests on norm (and relanding norm fixes) (#77930)
Had a land race with meta tests.

Will also be relanding https://github.com/pytorch/pytorch/pull/77407
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77930
Approved by: https://github.com/malfet, https://github.com/ezyang
2022-05-20 23:15:53 +00:00
PyTorch MergeBot
53b30579b7 Revert "[complex32] conv1d, conv2d : enable test (#77239)"
This reverts commit 2d3a6d7274.

Reverted https://github.com/pytorch/pytorch/pull/77239 on behalf of https://github.com/suo due to This broke nvfuser tests on master, see: 2d3a6d7274
2022-05-20 19:10:42 +00:00
kshitij12345
2d3a6d7274 [complex32] conv1d, conv2d : enable test (#77239)
Ref: #74537
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77239
Approved by: https://github.com/anjali411
2022-05-20 15:54:30 +00:00
Edward Z. Yang
9e0e949484 Fix bugs, increase meta coverage
Signed-off-by: Edward Z. Yang <ezyangfb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77499

Approved by: https://github.com/mruberry
2022-05-19 21:04:57 +00:00
Edward Z. Yang
e69e9b0ed8 Don't test std values if tensor is meta; fixes normal meta
Signed-off-by: Edward Z. Yang <ezyangfb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77740

Approved by: https://github.com/mruberry
2022-05-19 14:43:35 +00:00
Edward Z. Yang
88c89c9eb9 log_sigmoid_forward out support; out_wrapper_multi
Signed-off-by: Edward Z. Yang <ezyangfb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77739

Approved by: https://github.com/mruberry
2022-05-19 14:43:35 +00:00
Edward Z. Yang
baeffdbc6c reflection_pad2d support
Signed-off-by: Edward Z. Yang <ezyangfb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77681

Approved by: https://github.com/mruberry
2022-05-19 14:43:35 +00:00
Edward Z. Yang
e3403ff4ab square support
Signed-off-by: Edward Z. Yang <ezyangfb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77682

Approved by: https://github.com/ngimel, https://github.com/mruberry
2022-05-19 01:16:19 +00:00
Edward Z. Yang
4941e72e40 Revert "Revert "Implement sym_sizes to create proper IR for sym ints representing tensor sizes (#76836)""
This reverts commit c35bd8d423.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77719

Approved by: https://github.com/Chillee, https://github.com/malfet
2022-05-18 18:40:57 +00:00
Mike Ruberry
580a053832 [primTorch] Enforces stride metadata (#77542)
This PR...

**Filed the Following Issues**
- https://github.com/pytorch/pytorch/issues/77553
- https://github.com/pytorch/pytorch/issues/77526
- https://github.com/pytorch/pytorch/issues/77600

**Testing**
- Updates test_dtypes to longer attempt to test the backward of sample inputs where no inputs require grad
- Adds a new test_python_reference_errors; it ensures the meta operations for references throw errors as expected
- Updates compare_tensor_meta to better handle CUDA devices, and (temporarily) restricts stride checking to the CUDA device type
- Elementwise unary and elementwise binary operators now have arbitrarily strided reference inputs
- Reference inputs for _like functions are added
- An OpInfo for torch.empty is added
- Reference inputs for torch.clone are added
- A NumPy reference for clone is added
- Adds OpInfos for refs.empty and refs.empty_like

**Prims**
- Renames the "max" and "min" prims have been renamed to "maximum" and "minimum," respectively, to better conform to their ATen names
- Adds the empty, empty_like, full, and full_like prims
- Fixes the elementwise meta function's stride propagation
- Fixes clone's meta function's stride propagation
- Fixes convert_element_type's meta's stride propagation
- Adds a (temporary) _to_dtype pprivate prim that casts a tensor while preserving its stride permutation
- Removes the _set prim comment
- Adds utils.compute_elementwise_output_strides, which computes the correct output strides for elementwise operations
- Corrects an issue where utils.make_contiguous_strides_for was creating the incorrect strides for tensors with no elements

**References**
- Adds the empty, empty_like, full, full_like, and ones_like refs
- Extends make_elementwise_unary_reference to accept an additional callable to perform extra input validation
- Adds an extra validation function to handle refs.neg(BoolTensor)
- Updates the isfinite ref to call ones_like when appropriate
- Models Python scalar handling for elementwise binary operations
- Added a 64 dim check for the amin and amax references
- opmath is now a flag that can be set separately for cpu and CUDA
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77542
Approved by: https://github.com/ezyang
2022-05-18 13:57:26 +00:00
lezcano
ff7b6d6b5f Update linalg.*norm
This PR does a number of things:
- Move linalg.vector_norm to structured kernels and simplify the logic
- Fixes a number of prexisting issues with the dtype kwarg of these ops
- Heavily simplifies and corrects the logic of `linalg.matrix_norm` and `linalg.norm` to be consistent with the docs
  - Before the `_out` versions of these functions were incorrect
  - Their implementation is now as efficient as expected, as it avoids reimplementing these operations whenever possible.
- Deprecates `torch.frobenius_norm` and `torch.nuclear_norm`, as they were exposed in the API and they are apparently being used in mobile (??!!) even though they were not documented and their implementation was slow.
  - I'd love to get rid of these functions already, but I guess we have to go through their deprecation.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76547

Approved by: https://github.com/mruberry
2022-05-18 11:46:50 +00:00
PyTorch MergeBot
e9d660c331 Revert "Revert "Revert "Implement sym_sizes to create proper IR for sym ints representing tensor sizes (#76836)"""
This reverts commit acf7136a52.

Reverted https://github.com/pytorch/pytorch/pull/77719 on behalf of https://github.com/suo
2022-05-18 05:06:50 +00:00
Edward Z. Yang
acf7136a52 Revert "Revert "Implement sym_sizes to create proper IR for sym ints representing tensor sizes (#76836)""
This reverts commit c35bd8d423.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77719

Approved by: https://github.com/Chillee, https://github.com/malfet
2022-05-18 03:25:43 +00:00
PyTorch MergeBot
48581d74ad Revert "Add dispatch mode testing for meta tensors and other stuff"
This reverts commit c1cdb1216b.

Reverted https://github.com/pytorch/pytorch/pull/77477 on behalf of https://github.com/malfet
2022-05-18 02:56:48 +00:00
Edward Z. Yang
c1cdb1216b Add dispatch mode testing for meta tensors and other stuff
We don't have any coverage for meta tensor correctness for backwards
because torch function mode can only allow us to interpose on
Python torch API calls, but backwards invocations happen from C++.
To make this possible, I add torch_dispatch_meta test which runs the
tests with __torch_dispatch__

While doing this, I needed to generate fresh expected failure / skip
lists for the new test suite, and I discovered that my original
scaffolding for this purpose was woefully insufficient.  So I rewrote
how the test framework worked, and at the same time rewrote the
__torch_function__ code to also use the new logic.  Here's whats
new:

- Expected failure / skip is now done on a per function call basis,
  rather than the entire test.  This means that separate OpInfo
  samples for a function don't affect each other.

- There are now only two lists: expect failure list (where the test
  consistently fails on all runs) and skip list (where the test
  sometimes passes and fails.

- We explicitly notate the dtype that failed.  I considered detecting
  when something failed on all dtypes, but this was complicated and
  listing everything out seemed to be nice and simple.  To keep the
  dtypes short, I introduce a shorthand notation for dtypes.

- Conversion to meta tensors is factored into its own class
  MetaConverter

- To regenerate the expected failure / skip lists, just run with
  PYTORCH_COLLECT_EXPECT and filter on a specific test type
  (test_meta or test_dispatch_meta) for whichever you want to update.

Other misc fixes:

- Fix max_pool1d to work with BFloat16 in all circumstances, by making
  it dispatch and then fixing a minor compile error (constexpr doesn't
  work with BFloat16)

- Add resolve_name for turning random torch API functions into string
  names

- Add push classmethod to the Mode classes, so that you can more easily
  push a mode onto the mode stack

- Add some more skips for missing LAPACK

- Added an API to let you query if there's already a registration for
  a function, added a test to check that we register_meta for all
  decompositions (except detach, that decomp is wrong lol), and then
  update all the necessary sites to make the test pass.

Signed-off-by: Edward Z. Yang <ezyangfb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77477

Approved by: https://github.com/zou3519
2022-05-18 00:18:34 +00:00
Edward Z. Yang
2f602abf14 Register more decomps for meta.
Signed-off-by: Edward Z. Yang <ezyangfb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77362

Approved by: https://github.com/mruberry
2022-05-14 02:24:23 +00:00
Mikayla Gawarecki
841c65f499 Unprivate _index_reduce and add documentation
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76997

Approved by: https://github.com/cpuhrsch
2022-05-13 19:48:38 +00:00
Edward Z. Yang
d5ed73badd Make it possible to register decompositions to Meta key
Decompositions can be used to fill in meta support where necessary,
assuming the operations they decompose to support meta key.
This PR adds register_meta kwarg to register_decomposition that
optionally lets you register the meta to the C++ dispatch table
for meta tensors.  I use this to then get the meta function for
where and huber_loss for free.

Signed-off-by: Edward Z. Yang <ezyangfb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77353

Approved by: https://github.com/mruberry
2022-05-12 23:20:16 +00:00
anjali411
767af8e335 Add meta tensor support for some operations using python registration
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76916

Approved by: https://github.com/ezyang
2022-05-10 17:55:06 +00:00
Nikita Shulga
b4fa1e88be Skip lu_solve meta tests (#77110)
Fixes regressions introduced by revert of https://github.com/pytorch/pytorch/pull/72935

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77110
Approved by: https://github.com/suo, https://github.com/janeyx99
2022-05-09 22:59:51 +00:00
Edward Z. Yang
60f131fb6c Add OpInfo based meta tensor tests [RELAND]
PR #75994 was taking too long to ship so I extracted out the CrossRef gadget and
had it run on a simple OpInfo invocation only.

Signed-off-by: Edward Z. Yang <ezyangfb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77008

Approved by: https://github.com/ngimel
2022-05-07 12:15:10 +00:00
PyTorch MergeBot
828fb8c620 Revert "Add OpInfo based meta tensor tests"
This reverts commit d9fda18c4b.

Reverted https://github.com/pytorch/pytorch/pull/76905 on behalf of https://github.com/ezyang
2022-05-06 23:11:35 +00:00
Edward Z. Yang
d9fda18c4b Add OpInfo based meta tensor tests
https://github.com/pytorch/pytorch/pull/75994 was taking too long to
ship so I extracted out the CrossRef gadget and had it run on a simple
OpInfo invocation only.

TODO: There are failures that correspond to known bugs and need to be
skipped.

Signed-off-by: Edward Z. Yang <ezyangfb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76905

Approved by: https://github.com/anjali411, https://github.com/mruberry, https://github.com/albanD
2022-05-06 20:12:28 +00:00