For https://github.com/pytorch/pytorch/issues/114850, we will port distributed tests to Intel GPU. This PR will work on some test files under test/distributed. We could enable Intel GPU with following methods and try the best to keep the original code styles:
- instantiate_device_type_tests()
- use "torch.accelerator.current_accelerator()" to determine the accelerator backend
- use requires_accelerator_dist_backend to allow both nccl and xccl test
- enabled XPU for some test path
- Change the hardcoded world_size according to device_count.
- Unify some common code under torch/testing/_internal for multiple backend, for example:
Added xpu for Backend.backend_capability and dist.Backend.register_backend()
Pull Request resolved: https://github.com/pytorch/pytorch/pull/159473
Approved by: https://github.com/guangyey, https://github.com/d4l3k
For https://github.com/pytorch/pytorch/issues/114850, we will port distributed tests to Intel GPU. This PR will work on some test files under test/distributed. We could enable Intel GPU with following methods and try the best to keep the original code styles:
- instantiate_device_type_tests()
- use "torch.accelerator.current_accelerator()" to determine the accelerator backend
- use requires_accelerator_dist_backend to allow both nccl and xccl test
- enabled XPU for some test path
- Change the hardcoded world_size according to device_count.
- Unify some common code under torch/testing/_internal for multiple backend, for example:
Added xpu for Backend.backend_capability and dist.Backend.register_backend()
Pull Request resolved: https://github.com/pytorch/pytorch/pull/159473
Approved by: https://github.com/guangyey, https://github.com/d4l3k
For https://github.com/pytorch/pytorch/issues/114850, we will port distributed tests to Intel GPU. This PR will work on some test files under test/distributed. We could enable Intel GPU with following methods and try the best to keep the original code styles:
- instantiate_device_type_tests()
- use "torch.accelerator.current_accelerator()" to determine the accelerator backend
- use requires_accelerator_dist_backend to allow both nccl and xccl test
- enabled XPU for some test path
- Change the hardcoded world_size according to device_count.
- Unify some common code under torch/testing/_internal for multiple backend, for example:
Added xpu for Backend.backend_capability and dist.Backend.register_backend()
Pull Request resolved: https://github.com/pytorch/pytorch/pull/159473
Approved by: https://github.com/guangyey, https://github.com/d4l3k
https://github.com/pytorch/pytorch/pull/152708 expanded support of `get_estimated_runtime` to many more types of `SchedulerNodes`. This caused an increase in compile time because we're always calling `get_estimated_runtime` to populate the metrics table. This PR adds a flag for this logging, which reduces the instruction count by 8%. Long term, we should probably merge metrics.py with TORCH_LOGS/tlparse (suggestion from @xmfan).
Update: added support for TORCH_LOGS for the metrics logging.
Test Plan:
mm_loop.py and many existing tests cover.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153506
Approved by: https://github.com/eellison
Working as starter task with @Chillee
This PR adds a method under BaseSchedulerNode to estimate the node's runtime in seconds.
We use a heuristic based approach, first by considering whether the operation is memory bandwidth bounded or compute bounded:
- memory bandwidth bounded: we compute the number of bytes that are read/written to
- compute bounded: we compute the FLOPS required by the operation
One use case could be to be used as a cost model for scheduling: https://github.com/pytorch/pytorch/pull/100762
```
(pytorch-3.10) [14:08:02] ~/local/pytorch (xmfan/estimate_snode_runtime) > python3 test/inductor/test_perf.py -k EstimateSnodeRuntimeTests
[(ExternKernelSchedulerNode(name='buf0'), 400)]
[(ExternKernelSchedulerNode(name='buf0'), 2.35057908433887e-27)]
.[(ExternKernelSchedulerNode(name='buf0'), 3000), (SchedulerNode(name='buf1'), 3000)]
[(ExternKernelSchedulerNode(name='buf0'), 2.35057908433887e-26), (SchedulerNode(name='buf1'), 7.187055238190188e-09)]
.[(ExternKernelSchedulerNode(name='buf0'), 3000)]
[(ExternKernelSchedulerNode(name='buf0'), 2.35057908433887e-26)]
.[(ExternKernelSchedulerNode(name='buf0'), 34600)]
[(ExternKernelSchedulerNode(name='buf0'), 3.22687496698039e-24)]
.[(ExternKernelSchedulerNode(name='buf0'), 396)]
[(ExternKernelSchedulerNode(name='buf0'), 1.88046326747109e-27)]
.[(ExternKernelSchedulerNode(name='buf0'), 396)]
[(ExternKernelSchedulerNode(name='buf0'), 1.88046326747109e-27)]
.[(ExternKernelSchedulerNode(name='buf0'), 7776176)]
[(ExternKernelSchedulerNode(name='buf0'), 4.63240241413653e-21)]
.[(FusedSchedulerNode(nodes=buf0_buf1), 210)]
[(FusedSchedulerNode(nodes=buf0_buf1), 5.030938666733132e-10)]
.[(ExternKernelSchedulerNode(name='buf0'), 300)]
[(ExternKernelSchedulerNode(name='buf0'), 2.35057908433887e-27)]
.[(SchedulerNode(name='buf0'), 20)]
[(SchedulerNode(name='buf0'), 4.7913701587934585e-11)]
.
----------------------------------------------------------------------
Ran 10 tests in 14.311s
OK
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106426
Approved by: https://github.com/Chillee