Currently, the device-bias linter only targets functions decorated with @requires_gpu. This PR adds support for two new detection scenarios:
1. Detect device-bias code in functions decorated with @requires_triton.
2. Detect device-bias code for entire test suites that are defined as shared across GPUs. For example:
```
if __name__ == "__main__":
if HAS_GPU:
run_tests()
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/159949
Approved by: https://github.com/EikanWang, https://github.com/jansel
With fsdp, we sometimes have multiple, non-overlapping views of a single buffer which are all mutated. Previously we considered the original buffer as an allocation, and make the mutated buffer the deallocation. With multiple mutations of the same buffer, we need to consider the original buffer as deallocated only when all of its aliases die (and avoid double counting the input buffer size). See comment inline:
```
When an operation mutates a buffer in-place, the scheduler creates a new buffer name
to track the "before" and "after" states, even though they share the same memory.
The mutated buffer represents a rename with zero allocation and deallocation cost.
During dependency tracking, we transfer dependencies from the mutated name back to
the original buffer, ensuring the original memory is only freed when all aliases
are done.
This handles cases where a buffer has multiple non-overlapping aliases - rather than
trying to assign free costs to individual aliases, we forward all alias dependencies
to the original buffer.
Consider:
buf0 = op0()
buf1 = mutation_op_(buf0)
del buf0
...
op(buf1)
del buf1
The only memory events are the creation prior to op0, and the deletion following buf1.
```
As @IvanKobzarev 's logs in https://github.com/pytorch/pytorch/pull/158361/files#diff-e173a1d52aff49959c9f6d17ecc09946d8a616fc5909df884e62a15e1ebd1d41R1776-R1807 show, it can a bit of a pain to pinpoint which part of our memory calculation is incorrect.
This pr also adds a runtime verifier `config.test_configs.track_memory_lifecycle` which tracks buffer allocation and deallocation, and errors if their lifetime does not match our expectations.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/159569
Approved by: https://github.com/IvanKobzarev
**Problem:**
Fusion can accumulate large amount of reads, which leads to significant increase in peak memory utilization. Imagine we have the following code snippet
```
total = torch.rand(N, N)
for _ in range(r):
x = torch.rand(N, N)
total = total + x
```
The default execution is memory efficient as only two tensors of size N-by-N is in memory at any given time. However, with fusion, the additions are fused into a single operation and the execution becomes something like:
```
x_1 = torch.rand(N, N)
x_2 = torch.rand(N, N)
...
x_r = torch.rand(N, N)
total = x_1 + x_2 + ... + x_r
```
Though this is run-time efficient, in the case of large `N` and/or large `r`, this is not memory efficient.
[internal only] see [post](https://fb.workplace.com/groups/1075192433118967/permalink/1703374333634104/) for additional details
**Solution:**
Our proposed solution is to ban fusions in case where a large amount of reads are accumulated. This is in addition to some existing logics during torch compile.
* During lowering (i.e., `ir.py`), the config `realize_acc_reads_threshold`, which is default to be 8, controls _the number of_ buffers can be accumulated for a single operator. However, this is oblivious to the size of the buffers. Hence, we additionally introduce a config `realize_acc_reads_size_threshold` to control _the amount of buffers_ in size that can be accumulated.
* During scheduling (i.e., `scheduler.py`), additional fusion will be performed and thus we also need to capture such pattern there. The decisions are implemented under `choices.py`.
**Results:**
For a small example similar to be one in the test case (but with larger `N` and higher number of loop repeats), the memory snapshot before and after are shown below. Note the snapshot on the right is zoomed out so that the y-axis of the two snapshots match.
<img width="1328" alt="image" src="https://github.com/user-attachments/assets/670b5961-8454-4379-ae0f-62d4e7946c64" />
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157563
Approved by: https://github.com/jansel, https://github.com/mlazos
**Problem:**
Fusion can accumulate large amount of reads, which leads to significant increase in peak memory utilization. Imagine we have the following code snippet
```
total = torch.rand(N, N)
for _ in range(r):
x = torch.rand(N, N)
total = total + x
```
The default execution is memory efficient as only two tensors of size N-by-N is in memory at any given time. However, with fusion, the additions are fused into a single operation and the execution becomes something like:
```
x_1 = torch.rand(N, N)
x_2 = torch.rand(N, N)
...
x_r = torch.rand(N, N)
total = x_1 + x_2 + ... + x_r
```
Though this is run-time efficient, in the case of large `N` and/or large `r`, this is not memory efficient.
[internal only] see [post](https://fb.workplace.com/groups/1075192433118967/permalink/1703374333634104/) for additional details
**Solution:**
Our proposed solution is to ban fusions in case where a large amount of reads are accumulated. This is in addition to some existing logics during torch compile.
* During lowering (i.e., `ir.py`), the config `realize_acc_reads_threshold`, which is default to be 8, controls _the number of_ buffers can be accumulated for a single operator. However, this is oblivious to the size of the buffers. Hence, we additionally introduce a config `realize_acc_reads_size_threshold` to control _the amount of buffers_ in size that can be accumulated.
* During scheduling (i.e., `scheduler.py`), additional fusion will be performed and thus we also need to capture such pattern there. The decisions are implemented under `choices.py`.
**Results:**
For a small example similar to be one in the test case (but with larger `N` and higher number of loop repeats), the memory snapshot before and after are shown below. Note the snapshot on the right is zoomed out so that the y-axis of the two snapshots match.
<img width="1328" alt="image" src="https://github.com/user-attachments/assets/670b5961-8454-4379-ae0f-62d4e7946c64" />
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157563
Approved by: https://github.com/jansel, https://github.com/mlazos
**Problem:**
Fusion can accumulate large amount of reads, which leads to significant increase in peak memory utilization. Imagine we have the following code snippet
```
total = torch.rand(N, N)
for _ in range(r):
x = torch.rand(N, N)
total = total + x
```
The default execution is memory efficient as only two tensors of size N-by-N is in memory at any given time. However, with fusion, the additions are fused into a single operation and the execution becomes something like:
```
x_1 = torch.rand(N, N)
x_2 = torch.rand(N, N)
...
x_r = torch.rand(N, N)
total = x_1 + x_2 + ... + x_r
```
Though this is run-time efficient, in the case of large `N` and/or large `r`, this is not memory efficient.
[internal only] see [post](https://fb.workplace.com/groups/1075192433118967/permalink/1703374333634104/) for additional details
**Solution:**
Our proposed solution is to ban fusions in case where a large amount of reads are accumulated. This is in addition to some existing logics during torch compile.
* During lowering (i.e., `ir.py`), the config `realize_acc_reads_threshold`, which is default to be 8, controls _the number of_ buffers can be accumulated for a single operator. However, this is oblivious to the size of the buffers. Hence, we additionally introduce a config `realize_acc_reads_size_threshold` to control _the amount of buffers_ in size that can be accumulated.
* During scheduling (i.e., `scheduler.py`), additional fusion will be performed and thus we also need to capture such pattern there. The decisions are implemented under `choices.py`.
**Results:**
For a small example similar to be one in the test case (but with larger `N` and higher number of loop repeats), the memory snapshot before and after are shown below. Note the snapshot on the right is zoomed out so that the y-axis of the two snapshots match.
<img width="1328" alt="image" src="https://github.com/user-attachments/assets/670b5961-8454-4379-ae0f-62d4e7946c64" />
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157563
Approved by: https://github.com/jansel, https://github.com/mlazos
Partially fixing https://github.com/pytorch/pytorch/issues/138685
Add a (relatively safe?) heuristics to skip fusion if we can potentially increasing peak memory.
The doc string mainly explains what this PR is doing:
```
The implementation is more like a heuristic since we don't really know if we are at peak
or not when trying to fuse these two ndoes. The order of nodes may change later which makes the
peak memory estimation hard.
Here is how we decide the LOWER BOUND of extra memory allocation if we fuse these 2 nodes:
1. find all buffers read by each node with a single user. These buffers are supposed to
be reused if we don't fuses these 2 nodes
2. find the intersection of these buffers for the two node and sum the total buffer size.
If we don't fuse these two nodes, we can at lease avoid this much memory allocation.
Note that the extra memory allocation is not necessarily causing peak memory increase.
This is just a heuristic.
We return true only if the saving for fusion can not trade off the extra memory allocation.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138756
Approved by: https://github.com/jansel
ghstack dependencies: #139136
**Motivations**:
A topological order of the scheduler nodes that optimize the liveness of buffers can reduce the peak memory utilization. This has been observed and studied e.g., [here](https://arxiv.org/pdf/1910.02653) and [here](https://proceedings.mlr.press/v202/steiner23a/steiner23a.pdf).
**Solutions**:
1. implement a peak memory estimator via liveness analysis
2. implement a few memory aware topological sorting algorithms and pick the one with the lowest peak memory
**Results**:
On some models we can reduce the peak memory significantly:
| model | batch size | peak_memory baseline | peak_memory new | ratio |
|:-----------------------------:|:----------:|:--------------------:|:---------------:|:-----:|
| alexnet | 128 | 1.17 | 0.99 | 1.19 |
| vgg16 | 64 | 4.10 | 3.57 | 1.15 |
| DebertaV2ForQuestionAnswering | 1 | 11.60 | 10.56 | 1.10 |
In the presence of compiler based AC, peak memory can be further reduced:
| model | batch size | peak_memory baseline | peak_memory new | ratio |
|:------------------------------:|:----------:|:--------------------:|:---------------:|:-----:|
| AlbertForMaskedLM | 4 | 6.87 | 6.43 | 1.07 |
| AlbertForQuestionAnswering | 4 | 8.69 | 7.76 | 1.12 |
| MobileBertForQuestionAnswering | 128 | 4.67 | 3.90 | 1.20 |
[Here](https://fb.workplace.com/groups/1075192433118967/posts/1499920537312819/?comment_id=1499938843977655&reply_comment_id=1499951630643043) is an internal use case.
**Other infos:**
* neutral model runtime, because the the reordering happens after fusion. So memory saving is _for free_.
* minimal compile time overhead as the algorithm is linear in the number of edges of the inductor graph. For all hugglingface benchmark models, the additional compile time is less than 1 second.
* no peak memory regression since we only adopt a new order if the peak memory is reduced based on the estimator. However, the model is unaware of operators' working memories, but for large models, the working memory should be negligible. We haven't observed any significant regressions on all of our tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134874
Approved by: https://github.com/yf225