Twice this week I have had people confuse "operator defined with Python
operator registration aka torch.library" and "PyOperator which is used
to define control flow operators and other operators that cannot be
represented in JIT schema." Renaming PyOperator for clarity.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97493
Approved by: https://github.com/SherlockNoMad
Fixes#96347
This PR:
- Makes the functorch tests run as a part of the "default" shards
- Delete the functorch CI shard from all CI job configurations (if it exists)
- Increase the "default" shard count by 1 for each job, unless it was
previously set to 1, to accommodate the new functorch tests and not
regress time-to-signal.
- Adds a bunch of skips for ROCM and torchdynamo configurations. We can
investigate them later.
NB: I might go through some more iterations to figure out what other
skips need to be added, but this iteration of the PR seems to pass most CI.
suite.
Test Plan:
- wait for CI
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96464
Approved by: https://github.com/huydhn
### Motivation of this PR
This patch is to migrate `spmm_reduce` from `torch-sparse` (a 3rd party dependency for PyG) to `torch`, which is a response to the initial proposal for fusion of **Gather, Apply Scatter** in Message Passing of GNN inference/training. https://github.com/pytorch/pytorch/issues/71300
**GAS** is the major step for Message Passing, the behavior of **GAS** can be classified into 2 kinds depending on the storage type of `EdgeIndex` which records the connections of nodes:
* COO: the hotspot is `scatter_reduce`
* CSR: the hotspot is `spmm_reduce`
The reduce type can be choose from: "max", "mean", "max", "min".
extend `torch.sparse.mm` with an `reduce` argument, maps to `torch.sparse_mm.reduce` internally.
`sparse_mm_reduce` is registered under the TensorTypeId of `SparseCsrCPU`, and this operator requires an internal interface `_sparse_mm_reduce_impl` which has dual outputs:
* `out` - the actual output
* `arg_out` - records output indices in the non zero elements if the reduce type is "max" or "min", this is only useful for training. So for inference, it will not be calculated.
### Performance
Benchmark on GCN for obgn-products on Xeon single socket, the workload is improved by `4.3x` with this patch.
Performance benefit for training will be bigger, the original backward impl for `sum|mean` is sequential; the original backward impl for `max|min` is not fused.
#### before:
```
----------------------------- ------------ ------------ ------------ ------------ ------------ ------------
Name Self CPU % Self CPU CPU total % CPU total CPU time avg # of Calls
----------------------------- ------------ ------------ ------------ ------------ ------------ ------------
torch_sparse::spmm_sum 97.09% 56.086s 97.09% 56.088s 6.232s 9
aten::linear 0.00% 85.000us 1.38% 795.485ms 88.387ms 9
aten::matmul 0.00% 57.000us 1.38% 795.260ms 88.362ms 9
aten::mm 1.38% 795.201ms 1.38% 795.203ms 88.356ms 9
aten::relu 0.00% 50.000us 0.76% 440.434ms 73.406ms 6
aten::clamp_min 0.76% 440.384ms 0.76% 440.384ms 73.397ms 6
aten::add_ 0.57% 327.801ms 0.57% 327.801ms 36.422ms 9
aten::log_softmax 0.00% 23.000us 0.10% 55.503ms 18.501ms 3
```
#### after
```
----------------------------- ------------ ------------ ------------ ------------ ------------ ------------
Name Self CPU % Self CPU CPU total % CPU total CPU time avg # of Calls
----------------------------- ------------ ------------ ------------ ------------ ------------ ------------
aten::spmm_sum 87.35% 11.826s 87.36% 11.827s 1.314s 9
aten::linear 0.00% 92.000us 5.87% 794.451ms 88.272ms 9
aten::matmul 0.00% 62.000us 5.87% 794.208ms 88.245ms 9
aten::mm 5.87% 794.143ms 5.87% 794.146ms 88.238ms 9
aten::relu 0.00% 53.000us 3.35% 452.977ms 75.496ms 6
aten::clamp_min 3.35% 452.924ms 3.35% 452.924ms 75.487ms 6
aten::add_ 2.58% 348.663ms 2.58% 348.663ms 38.740ms 9
aten::argmax 0.42% 57.473ms 0.42% 57.475ms 14.369ms 4
aten::log_softmax 0.00% 22.000us 0.39% 52.605ms 17.535ms 3
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83727
Approved by: https://github.com/jgong5, https://github.com/cpuhrsch, https://github.com/rusty1s, https://github.com/pearu
# Summary
Add support for fused attention kernels (FlashAttention and memory-efficient attention) on Windows. Previously we could not do this because the fixes required c++17 to do this but we have since update the PyTorch standard.
This PR:
- Changes invocations of unsigned long to the fixed width integer type
- Adds in the #define FP16_SWITCH(COND, ...) which has been added to the flash_attention main branch
- Changes the some macros used within mem-efficient attention code in order to work around the VA_ARG discrepancy between clang/gcc and msvc. An alternative would be setting the global flag Zc:preprocessor
- Selectively applies /Zc:lambda to only the mem-efficient sources since applying this globally caused quantization files to not compile
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91909
Approved by: https://github.com/cpuhrsch
# Summary
In preparation for pt 2.0 launch this PR updates SDPA's API and makes the function a nn.funcitonal public function.
## Changes
### API
Previously the the function signature was:
`scaled_dot_product_attention(query, key, value, attn_mask=None, need_attn_weights=False, dropout_p=0.0, is_causal=False) -> (Tensor, Tensor)`
Updated signature:
`scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False) -> Tensor`
This PR removes the need_attn_weights optional boolean variable and updates the return type to a singular tensor.
#### Reasoning:
The main goal of this function is to provide an easy interface for users to call into fused attention kernels e.g. (FlashAttention). The fused kernels do not currently support arbitrary attn_mask or dropout but there is a PR to mem-efficient attention to enable these. We want to have the API surface ready for when the backing kernels get updated.
The fused kernels save on memory usage by not materializing the weights and it is unlikely that a fast fused implementation will enable this feature so we are removing.
Discussed with folks at FAIR/Xformers and +1 this API change.
#### Make function Public
In preparation for the pt 2.0 launch we make the function public to start to generate user feedback
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92189
Approved by: https://github.com/cpuhrsch
`log1p` offers better precision near zero since `(1 + x) - 1` truncates any
values less than the float epsilon to zero. For `soft_margin_loss` this also
requires one fewer kernel invocation which for numel=1e7 gives me a 1.2x speedup
on CUDA and a 1.1x speedup on CPU.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92114
Approved by: https://github.com/ngimel, https://github.com/lezcano
This PR removes the autograd.Function extension feature flag. This was
previously used for development of the functorch <> autograd.Function
interaction.
It's been in master for long enough with the feature flag defaulting to
True, so it's time to remove it.
Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92026
Approved by: https://github.com/soulitzer
Support for jvp is very similar to support for backward():
- We need to vmap over a version of the original autograd.Function's jvp
method that does not take ctx as input.
- On the output, we need to reductify to ensure the output tangent has
the same shape as the output. This reductify does not have the
extra reduction semantics, because PyTorch forward-mode AD requires the
output tangent to have the same exact shape as the output.
- setup_context needs to tell us the bdims of the saved_tensors
(necessary for vmap over jvp_no_context), as well
as the output shapes (necessary for reductify).
Test Plan:
- Added jvp support to the *GenVmapAutogradFunction
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91211
Approved by: https://github.com/soulitzer
This PR adds the following tests. They will be useful as test cases for
generate_vmap_rule=True and jvp (to come soon)
- test_jvpvmap
- test_jvpvmapvmap
- test_vmapjvpvmap
- test_jvpjvpvmap
- test_jvpvjpvmap
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91206
Approved by: https://github.com/soulitzer
It turns out that we *do* need to update *_scatter ops to return the exact same strides as their inputs. I added a test to `test/test_functionalization.py`, which now trips thanks to Ed's functionalization stride debugging check. It only actually ends up tripping silent correctness if you try to .backward() on that function.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91029
Approved by: https://github.com/ezyang
Design document:
https://docs.google.com/document/d/1bIQkWXy3J35_20c_a5kchikabBW5M8_uRAhl0BIMwU4/edit
This PR adds a `generate_vmap_rule` option (default False) to autograd.Function.
By setting it to True, a user promises to us that their autograd.Function's
{forward, backward, jvp}, if defined, only uses PyTorch operations, in addition to the other
limitations of autograd.Function+functorch (such as the user not
capturing any Tensors being transformed over from outside of the
autograd.Function).
Concretely, the approach is:
- we update `custom_function_call` to accept an additional
`generate_vmap_rule` argument.
- The vmap rule for `custom_function_call` and `generate_vmap_rule=True`
is: we construct a vmapped version of the autograd.Function and dispatch
on it.
- The vmapped version of the autograd.Function can be thought of like
the following: if we have an autograd.Function Foo, then
VmappedFoo.apply(in_dims, ...) has the same semantics as
vmap(Foo.apply, in_dims...)
- VmappedFoo's forward, setup_context, and backward staticmethod are
vmapped versions of Foo's staticmethods.
- See the design doc for more motivation and explanation
Test Plan:
- This PR introduces additional autograd.Function with the suffix "GenVmap" to
autograd_function_db.
- There are also some minor UX tests
Future:
- jvp support
- likely more testing to come, but please let me know if you have
cases that you want me to test here.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90966
Approved by: https://github.com/soulitzer
This PR adds the following OpInfo tests:
- vmap x vjp x vmap
- vjp x vmap x vmap
- vjp x vjp x vmap
These OpInfo tests only run for the autograd_function_db. In general,
testing composition of two transforms is sufficient to convince
ourselves that functorch works on a given operator.
The autograd.Function testing (especially the upcoming
generate_vmap_rule) didn't feel rigorous enough to me, so I added these
additional tests to convince myself.
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90962
Approved by: https://github.com/samdow, https://github.com/soulitzer
This PR adds functorch.jvp support for autograd.Function. It does so by
adding a jvp rule for custom_function_call.
For a regular PyTorch operation (like at::sin), the VariableType kernel:
- re-dispatches to at::sin
- calls the jvp rule for at::sin
The jvp rule for custom_function_call does just that. It constructs a
new autograd.Function (because the above logic already exists). Inside
the forward, it re-dispatches to custom_function_call. In the jvp rule,
it just calls whatever the jvp rule is supposed to be.
Since this logic is really close to the custom_function_call_grad, I
just put them together.
Test Plan:
- added jvp rules to the autograd.Function in autograd_function_db
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90077
Approved by: https://github.com/albanD, https://github.com/soulitzer
This PR adds a `vmap` staticmethod to autograd.Function and a
corresponding vmap kernel for custom_function_call. These two items mean
that autograd.Function with a vmap staticmethod can be used with vmap.
```py
class NumpyMul(torch.autograd.Function)
staticmethod
def forward(x, y):
return torch.tensor(to_numpy(x) * to_numpy(y), device=x.device)
staticmethod
def setup_context(ctx, outputs, x, y):
ctx.save_for_backward(x, y)
staticmethod
def backward(ctx, grad_output):
x, y = ctx.saved_tensors
gx = None
if isinstance(x, torch.Tensor) and x.requires_grad:
gx = NumpyMul.apply(grad_output, y)
gy = None
if isinstance(y, torch.Tensor) and y.requires_grad:
gy = NumpyMul.apply(grad_output, x)
return gx, gy
staticmethod
def vmap(info, in_dims, x, y):
x_bdim, y_bdim = in_dims
x = x.movedim(x_bdim, -1) if x_bdim else x.unsqueeze(-1)
y = y.movedim(y_bdim, -1) if y_bdim else y.unsqueeze(-1)
result = NumpyMul.apply(x, y)
result = result.movedim(-1, 0)
return result, 0
```
API Spec
- the staticmethod takes two arguments (info, in_dims) as well as the
unexpanded inputs (x, y).
- If we think about it as `vmap(info, in_dims, *args)`, `in_dims` is a
pytree with the same tree structure as args. It has None if the arg is
not being vmapped over and an integer vmapped dimension index if it is.
- `info` is an object with metadata about the vmap. It currently has one
field, `info.batch_size`. In the future we can extend this by adding
things like the randomness information.
- If there is a single vmap going on, (x, y) are NOT BatchedTensors,
they've already been unpacked.
- We expect the user to return a `(outputs, out_dims)` tuple. `out_dims`
must "broadcast" to the same pytree structure as `outputs`.
Semantics
- vmap(NumpyMul.apply)(x) will apply the vmap staticmethod if there is
one and will never actually run NumpyMul.forward.
- In order for the autograd.Function to support nested vmap (e.g.,
`vmap(vmap(NumpyMul.apply))(x)`, then the vmap staticmethod must call
into operations that vmap understands (i.e. PyTorch operators or more
autograd.Function).
At a high level, this PR:
- adds a vmap rule for custom_function_call
Testing
- Added some tests for in_dims and info
- Added vmap staticmethod to most of the autograd.Function in
autograd_function_db and sent them through functorch's vmap-related
OpInfo tests
Future
- Better error messages if the user gets the return contract wrong. I
didn't include them in this PR because it might involve a refactor of
some of the existing code in functorch/_src/vmap.py that will add
~200LOC to the PR, but LMK if you'd prefer it here.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90037
Approved by: https://github.com/samdow, https://github.com/soulitzer
Happy to split this PR more if it helps.
This PR adds functorch.grad support for autograd.Function. There's a lot
going on; here is the high level picture and there are more details as
comments in the code.
Mechanism (PyOperator)
- Somehow, autograd.Function needs to dispatch with functorch. This is
necessary because every layer of functorch needs to see the
autograd.Function; grad layers need to preserve the backward pass.
- The mechanism for this is via PyOperator. If functorch transforms are
active, then we wrap the autograd.Function in a `custom_function_call`
PyOperator where we are able to define various rules for functorch
transforms.
- `custom_function_call` has a rule for the functorch grad transform.
autograd.Function changes
- I needed to make some changes to autograd.Function to make this work.
- First, this PR splits autograd.Function into a _SingleLevelFunction
(that works with a single level of functorch transform) and
autograd.Function (which works with multiple levels). This is necessary
because functorch's grad rule needs some way of specifying a backward
pass for that level only.
- This PR changes autograd.Function's apply to eitehr call
`custom_function_call` (if functorch is active) or super().apply (if
functorch isn't active).
Testing
- Most of this PR is just testing. It creates an autograd.Function
OpInfo database that then gets passed to the functorch grad-based tests
(grad, vjp, vjpvjp).
- Since functorch transform tests are autogenerated from OpInfo tests,
this is the easiest way to test various autograd.Function with
functorch.
Future
- jvp and vmap support coming next
- better error message (functorch only supports autograd.Function that
have the optional setup_context staticmethod)
- documentation to come when we remove the feature flag
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89860
Approved by: https://github.com/soulitzer
This will be the last disruptive functorch internals change.
Why are we moving these files?
- As a part of rationalizing functorch we are moving the code in
functorch/_src to torch/_functorch
- This is so that we can offer the functorch APIs as native PyTorch APIs
(coming soon) and resolve some internal build issues.
Why are we moving all of these files at once?
- It's better to break developers all at once rather than many times
Test Plan:
- wait for tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90091
Approved by: https://github.com/anijain2305, https://github.com/ezyang
This will be the last disruptive functorch internals change.
Why are we moving these files?
- As a part of rationalizing functorch we are moving the code in
functorch/_src to torch/_functorch
- This is so that we can offer the functorch APIs as native PyTorch APIs
(coming soon) and resolve some internal build issues.
Why are we moving all of these files at once?
- It's better to break developers all at once rather than many times
Test Plan:
- wait for tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88756
Approved by: https://github.com/ezyang
Using the same repro from the issue (but with BatchNorm2D)
Rectifies native_batch_norm schema by splitting the schema into 2:
1. one will have NON-optional alias-able running_mean and running_var inputs
2. the other will just not have those parameters at all (no_stats variation)
**Calling for name suggestions!**
## test plan
I've added tests in test_functionalization.py as well as an entry in common_method_invocations.py for `native_batch_norm_legit`
CI should pass.
## next steps
Because of bc/fc reasons, we reroute native_batch_norm to call our new schemas ONLY through the python dispatcher, but in 2 weeks or so, we should make `native_batch_norm_legit` the official batch_norm.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88697
Approved by: https://github.com/albanD
The bug was discovered in https://github.com/pytorch/pytorch/pull/86842.
torch.cat has an edge case where it ignores all tensors of shape [0]. So
if any of the BatchedTensors have logical shape [0] but physical shape
[B, 0], then we coerce them to shape [0] by slicing them.
Why don't we just ignore those Tensors? We need to propagate
requires_grad-ness somehow (e.g. if the BatchedTensor wraps a Tensor of
shape [B, 0] that requires grad, then the output must require grad).
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86932
Approved by: https://github.com/Chillee
This PR applies a large hammer and disables TF32 in specific functorch transform tests. TF32 isn't precise enough to test correctness.
We could have applied a smaller hammer by disabling TF32 per-OpInfo, but that doesn't seem to have too much additional benefit (e.g. if a convolution batching rule is correct on fp32 then I would expect it to be correct under TF32 modulo precision issues because the actual sequence of PyTorch operators we invoke has not changed, only the backend did).
Test Plan:
- I tested this locally on a machine with A100 GPUs.
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86799
Approved by: https://github.com/malfet