Commit Graph

7 Commits

Author SHA1 Message Date
Arun Pa
266e278ccf UFMT formatting on test/distributions, test/error_messages, test/forward_backward_compatability (#123527)
Partiall addresses #123062

UFMT formatting on
- test/distributions
- test/error_messages, test/forward_backward_compatability

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123527
Approved by: https://github.com/huydhn
2024-04-09 16:03:46 +00:00
Catherine Lee
e3c5c369ba Run tests in USE_PYTEST_LIST through run_tests (#95659)
Part of my effort to move everything to pytest and decrease the number of testrunner frameworks in ci

Gives xmls but they might look a weird b/c module level tests vs tests in classes.

Doesn't give skip/disable test infra because those are tied to classes. (for future ref, could either put tests in classes or move the check_if_enable stuff into a pytest hook)

Tested in CI and checked that the same number of tests are run

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95659
Approved by: https://github.com/huydhn
2023-02-28 22:09:01 +00:00
Jane Xu
50f5689d60 Set test owner for distributions tests (#66842)
Summary:
Action following https://github.com/pytorch/pytorch/issues/66232

cc fritzo neerajprad alicanb nikitaved

Pull Request resolved: https://github.com/pytorch/pytorch/pull/66842

Reviewed By: neerajprad

Differential Revision: D31761720

Pulled By: janeyx99

fbshipit-source-id: 9d9e88d93e2efb90c971f165b4040880e9d90c56
2021-10-19 11:00:29 -07:00
Shen Li
1022443168 Revert D30279364: [codemod][lint][fbcode/c*] Enable BLACK by default
Test Plan: revert-hammer

Differential Revision:
D30279364 (b004307252)

Original commit changeset: c1ed77dfe43a

fbshipit-source-id: eab50857675c51e0088391af06ec0ecb14e2347e
2021-08-12 11:45:01 -07:00
Zsolt Dollenstein
b004307252 [codemod][lint][fbcode/c*] Enable BLACK by default
Test Plan: manual inspection & sandcastle

Reviewed By: zertosh

Differential Revision: D30279364

fbshipit-source-id: c1ed77dfe43a3bde358f92737cd5535ae5d13c9a
2021-08-12 10:58:35 -07:00
neerajprad
dee82ef3ea Add LKJCholesky distribution (#48798)
Summary:
As a follow up to https://github.com/pytorch/pytorch/issues/48041, this adds the `LKJCholesky` distribution that samples the Cholesky factor of positive definite correlation matrices.

This also relaxes the check on `tril_matrix_to_vec` so that it works for 2x2 matrices with `diag=-2`.

cc. fehiepsi

Pull Request resolved: https://github.com/pytorch/pytorch/pull/48798

Reviewed By: zhangguanheng66

Differential Revision: D25364635

Pulled By: neerajprad

fbshipit-source-id: 4abf8d83086b0ad45c5096760114a2c57e555602
2020-12-08 11:27:48 -08:00
neerajprad
5489a98cd3 Add support for CorrCholeskyTransform (#48041)
Summary:
This adds a transform to convert a real vector of (D * (D-1))/2 dimension into the cholesky factor of a D x D correlation matrix. This follows the implementation in [NumPyro](https://github.com/pyro-ppl/numpyro/blob/master/numpyro/distributions/transforms.py) by fehiepsi. This is needed for the LKJDistribution which will be added in a subsequent PR.

Also in line with the ongoing effort to refactor distributions test, this moves the transforms test into its own file that uses pytest with parametrized fixtures.

For review:
 fehiepsi - could you help review the math?
 fritzo - do you have any suggestions for what to do about the event dimension (more details are in the comment below)?
 ezyang - could you review the changes in `run_test.py`? Instead of a separate `PYTEST_TESTS`, I have clubbed these tests in `USE_PYTEST_LIST` to avoid duplicate logic. The only difference is that we do not anymore check if pytest is not installed and exclude the tests in the list. I figured that if existing tests are already using pytest, this should not matter.

TODOs (probably not all can be satisfied at the same time):
 - [x] Use operations that are JIT friendly, i.e. the transform works with different sized input under JIT.
 - [x] Resolve test failures - currently `arange(scalar_tensor)` fails on certain backends but this is needed for JIT. Maybe we should only support same sized tensor under JIT?
 - [x] Add tests to check that the transform gives correct gradients and is in agreement with the `log_det_jacobian`.
 - [x] Add `input_event_dim` and `output_event_dim` to `CorrCholeskyTransform`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/48041

Reviewed By: zhangguanheng66

Differential Revision: D25262505

Pulled By: neerajprad

fbshipit-source-id: 5a57e1c19d8230b53592437590b9169bdf2f71e9
2020-12-03 03:21:08 -08:00