Commit Graph

112 Commits

Author SHA1 Message Date
cyy
af629a8146 Enable readability-redundant-declaration (#143982)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143982
Approved by: https://github.com/Skylion007
2024-12-31 00:20:10 +00:00
cyy
45ed7c13fa Remove unneeded std::make_optional (#141567)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141567
Approved by: https://github.com/albanD
2024-11-28 00:05:21 +00:00
Richard Barnes
69af467d4f Eliminate c10::value_or_else (#138818)
Test Plan: Sandcastle

Differential Revision: D64857418

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138818
Approved by: https://github.com/malfet, https://github.com/Skylion007
2024-10-25 17:59:01 +00:00
Richard Barnes
542f7c8383 Eliminate C10_NODISCARD (#138336)
Test Plan: Sandcastle

Reviewed By: swolchok

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138336
Approved by: https://github.com/Skylion007
2024-10-19 02:54:06 +00:00
cyy
28f6ae2718 [9/N] Replace c10::optional with std::optional (#130674)
Follows  #130509

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130674
Approved by: https://github.com/Skylion007
2024-07-15 00:48:43 +00:00
cyy
f4dcf2ae93 [1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128301
Approved by: https://github.com/ezyang, https://github.com/r-barnes
2024-07-08 07:03:53 +00:00
PyTorch MergeBot
846bb30e13 Revert "[1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)"
This reverts commit bd72e28314.

Reverted https://github.com/pytorch/pytorch/pull/128301 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it fails XLA build bd72e28314. Please rebase your PR before relanding because I think the failure is hidden by an unrelated broken trunk XLA failure from your current base commit ([comment](https://github.com/pytorch/pytorch/pull/128301#issuecomment-2169035822))
2024-06-15 01:58:20 +00:00
cyy
bd72e28314 [1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128301
Approved by: https://github.com/ezyang
2024-06-14 23:21:01 +00:00
Richard Barnes
ed327876f5 [codemod] c10:optional -> std::optional (#126135)
Generated by running the following from PyTorch root:
```
find . -regex ".*\.\(cpp\|h\|cu\|hpp\|cc\|cxx\)$" | grep -v "build/" | xargs -n 50 -P 4 perl -pi -e 's/c10::optional/std::optional/'
```

`c10::optional` is just an alias for `std::optional`. This removes usages of that alias in preparation for eliminating it entirely.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126135
Approved by: https://github.com/Skylion007, https://github.com/malfet, https://github.com/albanD, https://github.com/aaronenyeshi
2024-05-14 19:35:51 +00:00
Ashwin Hari
5f5778476a rename ort to maia (#123265)
Fixes #123264

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123265
Approved by: https://github.com/albanD
2024-04-23 00:33:25 +00:00
Pearu Peterson
70d4d109f2 Make SparseCsr a functionality dispatch key (#120703)
As in the title.

To enable meta and fake tensor support for sparse compressed tensors in compliance with the meta/fake tensor support for sparse COO tensor.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120703
Approved by: https://github.com/ezyang
2024-03-01 13:28:46 +00:00
PyTorch MergeBot
8a32a07856 Revert "Add meta device support to sparse compressed tensors (#120498)"
This reverts commit 5d71ba6885.

Reverted https://github.com/pytorch/pytorch/pull/120498 on behalf of https://github.com/zou3519 due to broke CI ([comment](https://github.com/pytorch/pytorch/pull/120498#issuecomment-1964491999))
2024-02-26 15:59:36 +00:00
Pearu Peterson
5d71ba6885 Add meta device support to sparse compressed tensors (#120498)
As in the title.

Unblocks https://github.com/pytorch/pytorch/pull/117907#discussion_r1499251745

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120498
Approved by: https://github.com/ezyang
2024-02-25 16:50:17 +00:00
cyy
10f3abc6b8 [DeviceIndex][3/N] Use DeviceIndex in more places (#119635)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119635
Approved by: https://github.com/ezyang
2024-02-12 21:31:27 +00:00
cyy
1544c37520 [7/N] Fixes clang-tidy warnings in c10/{core,util}/*.h (#115495)
This PR continues to fix clang-tidy warnings for headers in c10/core and c10/util.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115495
Approved by: https://github.com/malfet
2023-12-19 02:14:30 +00:00
cyy
99f222372b [5/N] Fixes clang-tidy warnings in c10/{core,util}/*.h (#115354)
This PR continues to fix clang-tidy warnings for headers in c10/core and c10/util.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115354
Approved by: https://github.com/Skylion007
2023-12-09 17:16:04 +00:00
cyy
516bd4a72c [1/N] Use std::in_place (#115170)
It is time to gradually replace c10::in_place with std::in_place.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115170
Approved by: https://github.com/colesbury
2023-12-09 03:52:39 +00:00
Jesse Cai
4c01686027 Public API for constructing NT with jagged layout from tensor list (#111078)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111078
Approved by: https://github.com/cpuhrsch, https://github.com/soulitzer
ghstack dependencies: #109123
2023-10-13 03:27:41 +00:00
Anthony Alayo
8d65635378 Prefixing DeviceType with c10 namespace to avoid name collisions (#104364)
Fixes #91338

Follow up from https://github.com/pytorch/pytorch/pull/91342

> 🚀 The feature, motivation and pitch
> We have an existing DeviceType class all over the place in our code base, and it conflicts with the one that is used in torch. > Thankfully the pytorch DeciceType enum class is under the c10 namespace.

```
In file included from /xxx/build/_deps/torch-src/../../aten/src/ATen/ops/view.h:5:
/xxx/_deps/torch-src/aten/src/ATen/Context.h:265:14: error: reference to 'DeviceType' is ambiguous
    if (p == DeviceType::HIP) {
             ^
/xxx/include/Common_types.h:178:8: note: candidate found by name lookup is 'DeviceType'
struct DeviceType {
       ^
/xxx/build/_deps/torch-src/c10/../c10/core/DeviceType.h:32:12: note: candidate found by name lookup is 'c10::DeviceType'
enum class DeviceType : int8_t {
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104364
Approved by: https://github.com/albanD
2023-07-07 13:23:03 +00:00
Benson Ma
66a2600b6a [T153220354] Fix header inclusions in c10 (#1541) (#101846)
Summary:
This is a re-attempt to land the iwyu header changes, by taking the diff from [PR 100304](https://github.com/pytorch/pytorch/pull/100304), and adding the bare minimal changes to make the diff build corectly in the internal builds.

X-link: https://github.com/facebookresearch/pytorch3d/pull/1541

X-link: https://github.com/fairinternal/pytorch3d/pull/44

- Re-work D45769819 to fix header inclusions in c10

Test Plan:
```
buck2 build --no-remote-cache mode/dev-nosan //caffe2/c10/...

buck2 build --no-remote-cache mode/dev-nosan //deeplearning/fbgemm/fbgemm_gpu/...

buck2 build mode/dev-nosan //vision/fair/pytorch3d/pytorch3d:_C
```

Reviewed By: malfet

Differential Revision: D45920611

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101846
Approved by: https://github.com/malfet, https://github.com/Skylion007
2023-05-20 19:35:14 +00:00
PyTorch MergeBot
4eaaa08623 Revert "Fix header inclusions in c10 by iwyu (#100304)"
This reverts commit 6037ee8cc9.

Reverted https://github.com/pytorch/pytorch/pull/100304 on behalf of https://github.com/jeanschmidt due to Breaking meta internal builds and fbgemm builds ([comment](https://github.com/pytorch/pytorch/pull/100304#issuecomment-1543919257))
2023-05-11 12:37:35 +00:00
cyy
6037ee8cc9 Fix header inclusions in c10 by iwyu (#100304)
This work introduces include-what-you-use  support for c10 by a CMake option defaulting to off. We also remove some unused header inclusions and  fix a trivial inclusion error.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100304
Approved by: https://github.com/ezyang
2023-05-11 05:19:42 +00:00
PyTorch MergeBot
3271413e74 Revert "Fix header inclusions in c10 by iwyu (#100304)"
This reverts commit 39ec5fa722.

Reverted https://github.com/pytorch/pytorch/pull/100304 on behalf of https://github.com/huydhn due to Sorry for reverting your PR, it is almost there but fails on Windows 39ec5fa722, which is in unstable mode after https://github.com/pytorch/pytorch/pull/100548 ([comment](https://github.com/pytorch/pytorch/pull/100304#issuecomment-1542975714))
2023-05-11 00:37:32 +00:00
cyy
39ec5fa722 Fix header inclusions in c10 by iwyu (#100304)
This work introduces include-what-you-use  support for c10 by a CMake option defaulting to off. We also remove some unused header inclusions and  fix a trivial inclusion error.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100304
Approved by: https://github.com/ezyang
2023-05-10 15:42:43 +00:00
Kazuaki Ishizaki
64b8d20a5c Fix typos under c10 directory (#98079)
This PR fixes typos in comments and messages of files under `c10` directory

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98079
Approved by: https://github.com/Skylion007
2023-03-31 18:31:11 +00:00
cyy
d0e4ca233e some reference and move fixes (#95942)
This PR introduces some modifications:
1. We find out some const function parameters that can be passed by reference and add the reference.
2. We find more opportunists of passing by value and change them accordingly.
3. Some use-after-move errors are fixed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95942
Approved by: https://github.com/Skylion007
2023-03-10 03:44:09 +00:00
Aaron Gokaslan
700941f683 Fixup c10 headers with clang-tidy (#91407)
Clang-tidy was not applied properly to headers in c10 as documented #91406. These are the easy automated fixes that came out of applying clang-tidy to the c10 part of the code base. cc @ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91407
Approved by: https://github.com/ezyang
2022-12-28 11:12:22 +00:00
Edward Z. Yang
a33c5aceb5 Get TensorOptions.h using the FORALL macros to reduce manual code (#81789)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81789
Approved by: https://github.com/bdhirsh
2022-07-21 21:23:55 +00:00
Edward Z. Yang
c20969c40c Fix ParameterList printing meta tensor
Fixes https://github.com/pytorch/pytorch/issues/78250

There are actually two bugs.  First, the crash is caused
by TensorOptions::backend incorrectly reporting noexcept when
it can failed.  Second, ParameterList is using torch.tensortype
for no good reason; we can just print the dtype instead.

Signed-off-by: Edward Z. Yang <ezyangfb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/78529

Approved by: https://github.com/albanD
2022-06-01 00:46:52 +00:00
Hangchen Yu
abb6fab0f4 Add new PrivateUse1 DeviceType for non-public devices (#77208)
Summary: The new PrivateUse1 DeviceType is associated with the PrivateUse1 DispatchKey, which can be used for non-public devices without introducing a new device type. Note that the stringified name of the PrivateUse1 device is "privateuseone".

Test Plan: All CI should pass.

Differential Revision: D35859437

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77208
Approved by: https://github.com/bdhirsh
2022-05-13 16:03:27 +00:00
Kulin Seth
54c75e1e8f Add "mps" device to PyTorch framework.
Remove the "mlc" device for Mac platforms.

This commit will be followed up with:

* adding MPS runtime components
* PyTorch ops for MPS device

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76291
Approved by: https://github.com/albanD
2022-04-27 19:21:57 +00:00
Pearu Peterson
1cd46b309b Introduce sparse compressed layouts: SparseCsr, SparseBsr, SparseBsc
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75831

Approved by: https://github.com/cpuhrsch
2022-04-15 03:55:32 +00:00
Anthony Barbier
ce9e27a0fc Add new keys for Graphcore IPU (DispatchKey / Backend / DeviceType)
We need a key to register our out of tree backend: https://github.com/graphcore/poptorch
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74763
Approved by: https://github.com/bdhirsh
2022-04-07 17:18:45 +00:00
Brian Hirsh
58dabebcd7 improve quantized error checking for structured kernels (#71928)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/71928

Test Plan: Imported from OSS

Reviewed By: wconstab, bhosmer

Differential Revision: D33823417

Pulled By: bdhirsh

fbshipit-source-id: e894b9724833b77b12963cc4bf194bc6ce526ad9
(cherry picked from commit 6be10b79e7)
2022-02-01 16:09:45 +00:00
Amr Elshennawy
ca649851c6 Reduce PyTorch warnings: Cast fix xplat/caffe2/c10/core/TensorOptions.h (#65030)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/65030

Test Plan:
```
buck build --show-output //caffe2/torch/fb/sparsenn:sparsenn_operators

buck test caffe2/torch/fb/sparsenn:test
```

Reviewed By: r-barnes

Differential Revision: D30948721

fbshipit-source-id: 16fe42daab35709c56a4d3ccc276ea635a3510c1
2021-09-20 17:23:58 -07:00
Aaron Bockover
c78ab28441 Add support for the ONNX Runtime Eager Mode backend (#58248)
Summary:
This PR implements the necessary hooks/stubs/enums/etc for complete ONNX Runtime (ORT) Eager Mode integration. The actual extension will live out of tree at https://github.com/pytorch/ort.

We have been [working on this at Microsoft](https://github.com/microsoft/onnxruntime-pytorch/tree/eager-ort/torch_onnxruntime) for the last few months, and are finally ready to contribute the PyTorch core changes upstream (nothing major or exciting, just the usual boilerplate for adding new backends).

The ORT backend will allow us to ferry [almost] all torch ops into granular ONNX kernels that ORT will eagerly execute against any devices it supports (therefore, we only need a single ORT backend from a PyTorch perspective).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58248

Reviewed By: astaff

Differential Revision: D30344992

Pulled By: albanD

fbshipit-source-id: 69082b32121246340d686e16653626114b7714b2
2021-08-20 11:17:13 -07:00
Alex Suhan
b176feec1e Add device and key for lazy tensors (#61621)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/61621

Test Plan: CI

Reviewed By: mruberry

Differential Revision: D29912934

Pulled By: asuhan

fbshipit-source-id: 493c32063a3e756d93cbf1d876563a35eaafb537
2021-07-26 23:00:22 -07:00
Richard Barnes
15010bf223 Make some downcast issues explicit (#60412)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/60412

Test Plan: Sandcastle

Reviewed By: ngimel

Differential Revision: D29243195

fbshipit-source-id: c508b729d6a0e6f8a591521bce788e6cfd8531f8
2021-07-09 01:29:29 -07:00
Nicolas Weber
25e077bce1 [Issue 59296] added VE device (#59620)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/59296

Pull Request resolved: https://github.com/pytorch/pytorch/pull/59620

Reviewed By: zou3519

Differential Revision: D29196830

Pulled By: ezyang

fbshipit-source-id: 7bb49f776dc755804a0ba0bc3a7dbdab9c93914e
2021-06-21 16:44:52 -07:00
Sujoy Saraswati
3c973de543 HABANA Device registration key and Autograd key addition (#57094)
Summary:
Fixes #{issue number}

Pull Request resolved: https://github.com/pytorch/pytorch/pull/57094

Reviewed By: mruberry

Differential Revision: D28355895

Pulled By: wconstab

fbshipit-source-id: 5d8b5762a69f444f4fe7f476891150fa5483d893
2021-05-12 13:07:33 -07:00
Scott Wolchok
44cc873fba [PyTorch] Autoformat c10 (#56830)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56830

Opt into formatting on GitHub and format everything. This is a trial run before turning on formatting for more and eventually all of the codebase.

Test Plan: CI

Reviewed By: zertosh

Differential Revision: D27979080

fbshipit-source-id: a80f0c48691c08ae8ca0af06377b87e6a2351151
2021-04-30 21:23:28 -07:00
Edward Yang
09feb5f579 Delete grandfathered Caffe2 dispatch keys. (#56939)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56939

These never have kernels registered to them and are effectively useless.
What I am not so sure if we allocate tensors to them or not; if we do
I cannot use asserts and I need to ensure we just return undefined
or something equivalent.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: ailzhang

Differential Revision: D28006160

Pulled By: ezyang

fbshipit-source-id: f8e2b61b8bd928fb2c0ac0b534bd4af076423f71
2021-04-27 14:58:35 -07:00
Sameer Deshmukh
5fb1142702 Add CSR (compressed sparse row) layout for sparse tensors (#50937)
Summary:
Implement compressed sparse row format. Derived from the GCS implementation at https://github.com/pytorch/pytorch/pull/44190

Pull Request resolved: https://github.com/pytorch/pytorch/pull/50937

Reviewed By: mrshenli

Differential Revision: D27439865

Pulled By: ezyang

fbshipit-source-id: 3ba3dcb9679505b980ff6a5f513e913bbae2fb1d
2021-04-12 10:09:12 -07:00
Edward Yang
1f36ce6e4d Restore storage on meta tensors; increase meta coverage (#53973)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53973

Two parts to this PR; I had to put them together because adding support for X causes more test code to be exercised, which in turn may require a fix for Y.

The first part is restoring the concept of storage to meta tensors.  Previously, meta tensors had a nullptr storage (e.g., `meta_tensor.storage()` is an error.) As I was increasing the coverage of meta tensors, I started running into test cases (specifically memory overlap tests) that were failing because not having storage meant I couldn't check for memory overlap. After some discussion, we decided that it would make sense for meta tensors to model this as well (we already model strides, so getting accurate view information also seems useful). This PR does that by:

* Rewrite all of the factory functions in MetaTensor.cpp to use the generic versions (which are very carefully written to not actually poke at the data pointer, so everything works out). The key idea here is we give meta tensors a special allocator, MetaAllocator, which always returns a nullptr even if you ask for a nonzero number of bytes. resize_ is also made generic; the normal variant can be used directly rather than having to instruct it to avoid resizing storage
* Turn on memory overlap checking in TensorIterator even for meta tensors
* Although meta tensors now have storage, the concept of meta storage is NOT exposed to Python land (as it would imply I would have to codegen MetaFloatStorage, MetaDoubleStorage, etc. classes). So `x.storage()` still raises an error and I have a cludge in `__deepcopy__` to break storage sharing upon deep copy (this is wrong, but no tests exercise this at the moment).

The second part is adding more support for the most used functions in the test suite.

* Inplace operations have very simple meta functions. I added `fill_`, `zero_`, `random_`, `uniform_` and `normal_`. In the case of random, I take advantage of pbelevich's templates for defining random kernels, so that I can reuse the common scaffolding, and then just register a noop stub that actually does the RNG. (Look, another structured kernels tiny variant!)
* `copy_` is now implemented. Copying into a meta tensor is always OK, but copying out of a meta tensor raises an error (as we don't know what the "correct" data to copy out is in this case)
* `empty_strided` usage from structured kernels now is implemented (TBH, this could have been done as soon as `empty_strided` was added)
* Meta was missing in a few places in TensorOptions/DispatchKey utility functions, so I added them
* Autograd engine now correctly homes meta tensors with CPU tensors (they have -1 device index so CUDA queues wouldn't work anyway)
* `apply_`, `map_` and `map2_` are special cased to no-op on meta tensor self. These count as inplace operations too but they are implemented a little differently.

Getting more meta function support triggers a number of bugs in the test suite, which I then fix:

- Linear algebra functions sometimes don't report NotImplementedError because they get swallowed by catch all try blocks. This is tracked in https://github.com/pytorch/pytorch/issues/53739
- dlpack obviously doesn't work with meta tensors, I just disabled the test

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: D27036572

Test Plan: Imported from OSS

Reviewed By: agolynski, bdhirsh

Pulled By: ezyang

fbshipit-source-id: 7005ecf4feb92a643c37389fdfbd852dbf00ac78
2021-03-29 08:37:46 -07:00
Edward Yang
4919fecf23 Delete dead TensorOptions::key_set (#54004)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54004

According to
`glean-search find-decls --refs 'c10::TensorOptions::key_set'`
there are no uses of this function

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: bdhirsh

Differential Revision: D27047971

Pulled By: ezyang

fbshipit-source-id: 63662dd7ab27753ecb79c45c152c2cad1160dab2
2021-03-22 15:24:34 -07:00
Edward Yang
e0aebe241d Refactor tensor_new.cpp to use TensorOptions instead of DispatchKey (#54034)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54034

Fixes #53544

I had to touch a bunch of lines but the refactoring was fairly
mechanical.  Here's how it works.

The basic concept behind this PR is that tensor_new.cpp was previously
abusing DispatchKey when it actually meant TensorOptions.  The provided
DispatchKey argument to most of the constructor functions typically
comes from torch::tensors::get_default_dispatch_key();  it doesn't
really make sense for people to set the default dispatch key, but
this got grandfathered in due to the old API set_default_tensor_type
(where the "Type" concept got refactored into "DispatchKey" concept
over time).  See also #53124.  But the upshot is that, semantically,
what we refer to as the default dispatch key really is more like
torch.set_default_tensor_type(torch.Tensor) versus
torch.set_default_tensor_type(torch.cuda.Tensor): clearly the user
wants to do something about *construction* of the tensor, and
TensorOptions captures that exactly.

So, how exactly to translate from one to the other?
- Sources (things that used to PRODUCE DispatchKey)
  - Most top level functions take a DispatchKey as their argument.  I
    use the new function dispatchKeyToTensorOptions to convert it into
    a TensorOptions
  - typeIdWithDefault now produces a TensorOptions (probably could do
    with a rename, though I didn't)
- Sinks (things that used to CONSUME DispatchKey)
  - Previously, the function options() was typically used to convert the
    DispatchKey into a TensorOptions.  Now its replacement build_options
    just takes a TensorOptions and sets some extra fields on it.
    Irritatingly, I can't just replace
    `build_options(options, scalar_type, device)` with
    `options.dtype(scalar_type).device(device)` because the semantics
    are slightly different: if device is nullopt, we should preserve
    the usage of the device specified in options (what options.device()
    does is overwrite the device unconditionally; e.g., if device is
    nullopt, unset device from options)
  - The other major sink for DispatchKey was `internal_new_from_data`,
    but it turns out it only really extracts the device type from
    the dispatch key.  Now it just pulls out the device from
    TensorOptions.
- To actually do the translation of DispatchKey to TensorOptions, I
  introduce new functions dispatchKeyToLayout (replicating
  layout_from_backend--there are still a few uses of this function
  so I couldn't delete it) and dispatchKeyToDeviceType (replacing
  computeDeviceType)
- In all internal functions, whenever DispatchKey is taken as an argument,
  I instead take TensorOptions as an argument, and pass it along.
- Anywhere `legacyExtractDispatchKey(other.key_set())` equality was
  previously used, I now do `other.options().type_equal()`, which
  is the intended BC for doing "backend to backend" comparisons
- There are a few places in the sparse constructors where we allocated
  a tensor for values, and then read out the dispatch key from the
  result to allocate the keys.  As best as I can tell, this is totally
  equivalent to just passing in the options to both values and indices
  (the only difference is dtype, which is captured via a separate
  argument)

This refactor doesn't really go far enough: for example, there are now
functions that take both TensorOptions and ScalarType, when really
the TensorOptions can capture this all.  I kept it solely just
s/DispatchKey/TensorOptions/ to reduce the number of possible bugs;
also, a lot of this will be mooted by a proper fix to #53124.

Even with this limited refactor, the payoff is sweet.  I can delete:

- backendToCPU
- backendToXPU
- backendToCUDA
- backendToHIP
- backendToBackendOfDeviceType

The reason I can do this is because I can simply overwrite layout in TensorOptions
to do the conversion, rather than having to type out each backend case
explicitly.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: bhosmer

Differential Revision: D27109509

Pulled By: ezyang

fbshipit-source-id: 91d16cfbc390127770362ac04fb43f7e070077e9
2021-03-19 09:08:32 -07:00
Edward Yang
d47fd3df81 Compute type_equal() without reference to backend() (#53823)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53823

Argument for correctness: type_equal previous compared if backends
are equal.  Backend is computed by translation from dispatch key.
I verified that computeDispatchKey never computed a weird
dispatch key (e.g., AutogradXLA), so that dispatchKeyToBackend
was effectively injective.  Then it is always valid to compare
the arguments of an injective function for equality, rather than
the output of the injective function.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: mruberry

Differential Revision: D27036575

Pulled By: ezyang

fbshipit-source-id: 6aeafc89f287da0bc0065bd21c1adb5e272dbb81
2021-03-16 15:19:57 -07:00
Edward Yang
4dbd0b639d Convert a few more checks to raise NotImplementedError (#53610)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53610

I noticed these because I was running the test suite under
meta device and triggered these error checks without getting
a NotImplementedError.  Well, now they raise.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: glaringlee

Differential Revision: D26918376

Pulled By: ezyang

fbshipit-source-id: 20d57417aa64875d43460fce58af11dd33eb4a23
2021-03-10 08:53:59 -08:00
Edward Yang
0f81a69a96 Make meta a device (getting rid of empty_meta) (#53143)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53143

Meta is now an honest to goodness device type, like cpu, so you can use
device='meta' to trigger allocation of meta tensors.  This way better
than empty_meta since we now have working API for most factory functions
(they don't necessarily work yet, though, because need to register Meta
versions of those functions.)

Some subtleties:
- I decided to drop the concept of CPU versus CUDA meta tensors; meta
  tensors are device agnostic.  It's hard to say exactly what the
  correct level of abstraction here is, but in this particular case
  implementation considerations trump semantic considerations: it
  is way easier to have just a meta device, than to have a meta device
  AND a cpu device AND a cuda device.  This may limit the applicability
  of meta tensors for tracing models that do explicit cpu()/cuda()
  conversions (unless, perhaps, we make those operations no-ops on meta
  tensors).
- I noticed that the DeviceType uppercase strings are kind of weird.
  Are they really supposed to be all caps?  That's weird.
- I moved the Meta dispatch key to live with the rest of the "device"
  dispatch keys.
- I intentionally did NOT add a Backend for Meta.  For now, I'm going to
  hope meta tensors never exercise any of the Backend conversion code;
  even if it does, better to fix the code to just stop converting to and
  from Backend.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: samestep

Differential Revision: D26763552

Pulled By: ezyang

fbshipit-source-id: 14633b6ca738e60b921db66a763155d01795480d
2021-03-03 11:24:13 -08:00
Lance Ware
fdd25f82c9 Update to replace AT_ERROR with TORCH_CHECK (#52711)
Summary:
Fixes #{52699}

Pull Request resolved: https://github.com/pytorch/pytorch/pull/52711

Reviewed By: ailzhang

Differential Revision: D26654677

Pulled By: malfet

fbshipit-source-id: 97079250d144c9b1c69028f35e4a23a34481b2a5
2021-02-25 19:51:29 -08:00