Commit Graph

11 Commits

Author SHA1 Message Date
Laith Sakka
7cfd054075 [attempt 2] Compute contiguity symbolically to avoid dde, and introduce c++ sym_is_contiguous (#157472)
Summary:
When we compute contiguity for a tensor with dynamic shapes we first:
1) Try to compute it without guarding.
2) If all shapes hinted, compute it with potentially adding guards.
3) if any input is not hinted, compute it symbolically.

sym_is_contiguous return a SymBool that is then either evaluated or guard_or_false can be called
on it to avoid data dependent errors.

ex:
 bool is_contiguous = input.sym_is_contiguous().guard_or_false(__FILE__, __LINE__);
is_contiguous_or_false is a helper function that does that.

In this PR I only handle default contiguity, will follow up with changes for other formats like  channel_last .
We use this patter in this PR for several locations to avoid DDEs.

Test Plan:
contbuild & OSS CI,

Rollback Plan:

Reviewed By: malfet

Differential Revision: D77639021

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157472
Approved by: https://github.com/aorenste
2025-07-02 23:12:29 +00:00
PyTorch MergeBot
c6a27bae36 Revert "[do not revert] Compute contiguity symbolically to avoid dde, and introduce c++ sym_is_contiguous (#155590)"
This reverts commit d0a9629435.

Reverted https://github.com/pytorch/pytorch/pull/155590 on behalf of https://github.com/laithsakka due to was asked by to land this internally  ([comment](https://github.com/pytorch/pytorch/pull/155590#issuecomment-3025796794))
2025-07-01 22:58:14 +00:00
Laith Sakka
d0a9629435 [do not revert] Compute contiguity symbolically to avoid dde, and introduce c++ sym_is_contiguous (#155590)
When we compute contiguity for a tensor with dynamic shapes we first:
1) Try to compute it without guarding.
2) If all shapes hinted, compute it with potentially adding guards.
3) if any input is not hinted, compute it symbolically.

sym_is_contiguous return a SymBool that is then either evaluated or guard_or_false can be called
on it to avoid data dependent errors.

ex:
 bool is_contiguous = input.sym_is_contiguous().guard_or_false(__FILE__, __LINE__);
is_contiguous_or_false is a helper function that does that.

In this PR I only handle default contiguity, will follow up with changes for other formats like  channel_last .
We use this patter in this PR for several locations to avoid DDEs.
Differential Revision: [D77183032](https://our.internmc.facebook.com/intern/diff/D77183032)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155590
Approved by: https://github.com/ezyang
2025-07-01 21:39:38 +00:00
PyTorch MergeBot
1586521461 Revert "Compute contiguity symbolically to avoid dde, and introduce c++ sym_is_contiguous (#155590)"
This reverts commit 2c76f31221.

Reverted https://github.com/pytorch/pytorch/pull/155590 on behalf of https://github.com/jeanschmidt due to Breaking 1000s of internal builds, it cant be properly landed internally, there are no options except revert and codev. ([comment](https://github.com/pytorch/pytorch/pull/155590#issuecomment-3023503929))
2025-07-01 11:23:00 +00:00
Laith Sakka
2c76f31221 Compute contiguity symbolically to avoid dde, and introduce c++ sym_is_contiguous (#155590)
When we compute contiguity for a tensor with dynamic shapes we first:
1) Try to compute it without guarding.
2) If all shapes hinted, compute it with potentially adding guards.
3) if any input is not hinted, compute it symbolically.

sym_is_contiguous return a SymBool that is then either evaluated or guard_or_false can be called
on it to avoid data dependent errors.

ex:
 bool is_contiguous = input.sym_is_contiguous().guard_or_false(__FILE__, __LINE__);
is_contiguous_or_false is a helper function that does that.

In this PR I only handle default contiguity, will follow up with changes for other formats like  channel_last .
We use this patter in this PR for several locations to avoid DDEs.
Differential Revision: [D77183032](https://our.internmc.facebook.com/intern/diff/D77183032)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155590
Approved by: https://github.com/ezyang
2025-06-27 04:59:52 +00:00
cyy
38d3c27849 [1/N] Enable cppcoreguidelines-special-member-functions (#137405)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137405
Approved by: https://github.com/ezyang
2024-10-23 00:16:53 +00:00
cyy
f83ef69b84 Fix typo in assignment operators (#131890)
Most typos were introduced in #131077
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131890
Approved by: https://github.com/Skylion007
2024-07-27 11:13:42 +00:00
cyyever
451462dbff [1/N] Add missing constructors or assignment operators (#131077)
Just mark them as deleted in most cases.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131077
Approved by: https://github.com/ezyang
2024-07-24 12:09:39 +00:00
cyy
1544c37520 [7/N] Fixes clang-tidy warnings in c10/{core,util}/*.h (#115495)
This PR continues to fix clang-tidy warnings for headers in c10/core and c10/util.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115495
Approved by: https://github.com/malfet
2023-12-19 02:14:30 +00:00
Peter Bell
15b61d6c1a TensorImpl: Lazily compute numel and contiguity when symbolic (#112785)
Currently whenever the sizes or strides are modified for a `TensorImpl` we
eagerly recompute the numel and memory format flags. This is fine for static
shapes as it's all fast C++ code, but for symbolic shapes it runs slow python code.

This instead changes the `SymbolicShapeMeta` object to compute the derived
quantities lazily at the first request. This has the added benefit that we can
now pass assumptions in `empty_tensor_restride` which remove the need to compute
some contiguity flags at all.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112785
Approved by: https://github.com/ezyang
ghstack dependencies: #112689, #112890
2023-11-09 01:36:37 +00:00
Peter Bell
8c4bdac560 TensorImpl: Move symbolic refresh_numel and refresh_contiguous into their own class (#112890)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112890
Approved by: https://github.com/lezcano
ghstack dependencies: #112689
2023-11-09 01:36:37 +00:00