This PR only adds the execution of the benchmarks on this PR and print results, following diffs will add checking out head~1 and running it and comparing.
to access results goto test pr_time_benchmarks and inspect logs:
you should see
```
+ echo 'benchmark results on current PR: '
benchmark results on current PR:
+ cat /var/lib/jenkins/workspace/test/test-reports/pr_time_benchmarks_before.txt
update_hint_regression,instruction_count,27971461254
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131475
Approved by: https://github.com/ezyang
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127126
Approved by: https://github.com/kit1980
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127126
Approved by: https://github.com/kit1980
ghstack dependencies: #127122, #127123, #127124, #127125
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.
The list of the `nn.quantized` files that are being migrated:
- [ ] `torch.nn.quantized` → `torch.ao.nn.quantized`
- [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
- [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
- [X] [Current PR] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
- [ ] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [ ] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
- [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
- [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
- [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
- [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
- [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
- [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
- [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`
Majority of the files are just moved to the new location.
However, specific files need to be double checked:
- [Documentation](docs/source/quantization-support.rst) @vkuzo
- [Public API test list](test/allowlist_for_publicAPI.json) @peterbell10
- [BC test](test/quantization/bc/test_backward_compatibility.py) @vkuzo
- [IR emitter](torch/csrc/jit/frontend/ir_emitter.cpp) @jamesr66a
- [JIT serialization](torch/csrc/jit/serialization/import_source.cpp) @IvanKobzarev @jamesr66a
Differential Revision: [D36860660](https://our.internmc.facebook.com/intern/diff/D36860660/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36860660/)!
Differential Revision: [D36860660](https://our.internmc.facebook.com/intern/diff/D36860660)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78714
Approved by: https://github.com/jerryzh168
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.
The list of the `nn.quantized` files that are being migrated:
- [ ] `torch.nn.quantized` → `torch.ao.nn.quantized`
- [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
- [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
- [X] [Current PR] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
- [ ] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [ ] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
- [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
- [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
- [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
- [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
- [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
- [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
- [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`
Majority of the files are just moved to the new location.
However, specific files need to be double checked:
- [Documentation](docs/source/quantization-support.rst) @vkuzo
- [Public API test list](test/allowlist_for_publicAPI.json) @peterbell10
- [BC test](test/quantization/bc/test_backward_compatibility.py) @vkuzo
- [IR emitter](torch/csrc/jit/frontend/ir_emitter.cpp) @jamesr66a
- [JIT serialization](torch/csrc/jit/serialization/import_source.cpp) @IvanKobzarev @jamesr66a
Differential Revision: [D36860660](https://our.internmc.facebook.com/intern/diff/D36860660/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36860660/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78714
Approved by: https://github.com/jerryzh168
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47767
This diff implements the functionality of running benchmark on mobile on top of operator_benchmark framework. It does so through a few steps:
1. create a scripted module from existing benchmark case.
2. run mobile specific optimization pass on the scripted module
3. run the scripted module on AiBench by calling its Python API
A small change in the way of writing a benchmark case is introduced so that both local and mobile run can share the same interface. The change is about having inputs as arguments of the `forward` function, so that mobile optimization pass can be run successfully (otherwise everything will be optimized away by constant propagation).
Test Plan:
## local op_bench run
buck run caffe2/benchmarks/operator_benchmark:benchmark_all_test -- --iterations 1 --warmup_iterations 1
buck run caffe2/benchmarks/operator_benchmark:benchmark_all_test -- --iterations 1 --warmup_iterations 1 --use_jit
Exceptions: `py_module` op in `FakeQuantizePerTensorBaseOpBenchmark` and `FakeQuantizePerChannelBaseOpBenchmark` under JIT mode. These tests also failed in the base version
```
RuntimeError:
Module 'FakeQuantizePerChannelOpBenchmark' has no attribute 'op_func' (This function exists as an attribute on the Python module, but we failed to compile it to a TorchScript function.
The error stack is reproduced here:
Python builtin <built-in method apply of FunctionMeta object at 0x619000c652a0> is currently not supported in Torchscript:
File "/data/users/wangyang19/fbsource/fbcode/buck-out/dev/gen/caffe2/benchmarks/operator_benchmark/pt/quantization_test#link-tree/quantization_test.py", line 260
quant_min: int, quant_max: int
):
return _LearnableFakeQuantizePerChannelOp.apply(input, scale, zero_point, axis, quant_min, quant_max, 1.0)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
:
File "/data/users/wangyang19/fbsource/fbcode/buck-out/dev/gen/caffe2/benchmarks/operator_benchmark/pt/quantization_test#link-tree/quantization_test.py", line 313
axis: int, quant_min: int, quant_max: int
):
return self.op_func(input, scale, zero_point, axis, quant_min, quant_max)
~~~~~~~~~~~~ <--- HERE
```
`_consume_op` typing mismatch: chunk, split, qobserver, sort in qunary. These will be fixed in D24774105
## OSS test
python3 -m benchmark_all_test --iterations 1 --warmup_iterations 1 --use_jit
python3 -m benchmark_all_test --iterations 1 --warmup_iterations 1
## saved module graph
```
module __torch__.mobile_benchmark_utils.OpBenchmarkMobile {
parameters {
}
attributes {
training = True
num_iters = 1
benchmark = <__torch__.pt.add_test.___torch_mangle_4.AddBenchmark object at 0x6070001b8b50>
}
methods {
method forward {
graph(%self : __torch__.mobile_benchmark_utils.OpBenchmarkMobile):
%12 : None = prim::Constant() # /data/users/wangyang19/fbsource/fbcode/buck-out/dev/gen/caffe2/benchmarks/operator_benchmark/fb/pt/mobile/benchmark_all_test_fbcode#link-tree/mobile_benchmark_utils.py:9:4
%4 : bool = prim::Constant[value=1]() # /data/users/wangyang19/fbsource/fbcode/buck-out/dev/gen/caffe2/benchmarks/operator_benchmark/fb/pt/mobile/benchmark_all_test_fbcode#link-tree/mobile_benchmark_utils.py:10:8
%1 : int = prim::GetAttr[name="num_iters"](%self)
= prim::Loop(%1, %4) # /data/users/wangyang19/fbsource/fbcode/buck-out/dev/gen/caffe2/benchmarks/operator_benchmark/fb/pt/mobile/benchmark_all_test_fbcode#link-tree/mobile_benchmark_utils.py:10:8
block0(%i : int):
%6 : __torch__.pt.add_test.___torch_mangle_4.AddBenchmark = prim::GetAttr[name="benchmark"](%self)
%7 : __torch__.pt.add_test.___torch_mangle_4.AddBenchmark = prim::GetAttr[name="benchmark"](%self)
%self.inputs_tuple : (Float(1, 1, 1, strides=[1, 1, 1], requires_grad=0, device=cpu), Float(1, 1, 1, strides=[1, 1, 1], requires_grad=0, device=cpu)) = prim::Constant[value=({0.48884}, {0.809042})]()
%9 : Tensor, %10 : Tensor = prim::TupleUnpack(%self.inputs_tuple)
%23 : int = prim::Constant[value=1]()
%24 : Tensor = aten::add(%9, %10, %23) # /data/users/wangyang19/fbsource/fbcode/buck-out/dev/gen/caffe2/benchmarks/operator_benchmark/fb/pt/mobile/benchmark_all_test_fbcode#link-tree/pt/add_test.py:39:15
-> (%4)
return (%12)
}
}
submodules {
module __torch__.pt.add_test.___torch_mangle_4.AddBenchmark {
parameters {
}
attributes {
mobile_optimized = True
}
methods {
method forward {
graph(%self : __torch__.pt.add_test.___torch_mangle_4.AddBenchmark,
%input_one.1 : Tensor,
%input_two.1 : Tensor):
%3 : int = prim::Constant[value=1]()
%4 : Tensor = aten::add(%input_one.1, %input_two.1, %3) # /data/users/wangyang19/fbsource/fbcode/buck-out/dev/gen/caffe2/benchmarks/operator_benchmark/fb/pt/mobile/benchmark_all_test_fbcode#link-tree/pt/add_test.py:39:15
return (%4)
}
method get_inputs {
graph(%self : __torch__.pt.add_test.___torch_mangle_4.AddBenchmark):
%self.inputs_tuple : (Float(1, 1, 1, strides=[1, 1, 1], requires_grad=0, device=cpu), Float(1, 1, 1, strides=[1, 1, 1], requires_grad=0, device=cpu)) = prim::Constant[value=({0.48884}, {0.809042})]()
return (%self.inputs_tuple)
}
}
submodules {
}
}
}
}
```
Reviewed By: kimishpatel
Differential Revision: D24322214
fbshipit-source-id: 335317eca4f40c4083883eb41dc47caf25cbdfd1
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46679
Current way of import configs will have runtime error when a single benchmark is launched directly with buck(e.g. `/buck-out/gen/caffe2/benchmarks/operator_benchmark/pt/conv_test.par`). The diff fixed that issue.
ghstack-source-id: 114857978
Test Plan: waitforsandcastle
Reviewed By: vkuzo
Differential Revision: D24459631
fbshipit-source-id: 29df17e66962a8604dbb7b8b9106713c3c19bed5
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42767
Same as previous PR, forcing the qlinear benchmark to follow the fp one
Test Plan:
```
cd benchmarks/operator_benchmark
python -m pt.linear_test
python -m pt.qlinear_test
```
Imported from OSS
Reviewed By: jerryzh168
Differential Revision: D23013937
fbshipit-source-id: fffaa7cfbfb63cea41883fd4d70cd3f08120aaf8
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36674
Slight changes to qlinear benchmark to have it be in the same format
as linear, for fairer comparisons between FP and Q.
Test Plan:
```
cd benchmarks/operator_benchmark
python -m pt.linear_test
python -m pt.qlinear_test
```
Imported from OSS
Differential Revision: D21102562
fbshipit-source-id: 4f5c693b5de7e26c4326a9ec276560714290f6c6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26574
Since we also have `quantized::linear`, `quantize_linear` sounds
confusing, so we plan to rename it before the branch cut
Test Plan:
ci
Imported from OSS
Differential Revision: D17514876
fbshipit-source-id: 01d9005e6ec8cb9950b9d8bba122109c389641d3