Commit Graph

376 Commits

Author SHA1 Message Date
Nicolas De Carli
d9a55faccc [Pytorch] Add NEON Vectorized<double> translation layers (#166092)
Summary:
Adding NEON specializations of Vectorized<double>

Correcness has been checked using test_ops.py and running torch test

Test Plan:
Correctness:

buck2 test mode/opt //caffe2/test:test_ops
buck2 test mode/opt //caffe2/test:torch

Performance:

Added torch.float64 as data type to test within binary_test.py

Reviewed By: mcfi

Differential Revision: D84924406

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166092
Approved by: https://github.com/malfet
2025-10-23 20:20:48 +00:00
Nicolas De Carli
3e77a2b478 [PyTorch] Improve aarch64 performance of bfloat16 ops (#166028)
Summary:
PR allows compiler to better optimize some bfloat16-based operations, when ran on NEON

Benchmarks show measurable improvements:

Before:
bfloat16 add: 250.503us
bfloat16 sub: 245.674us
bfloat16 neg: 113.945us

After:
bfloat16 add: 203.862us ---> 23% higher throughput
bfloat16 sub: 201.526us ---> 22% higher throughput
bfloat16 neg: 74.986us ---> 52% higher throughput

Test Plan:
Correctness:

buck2 test mode/opt //caffe2/test:test_ops
buck2 test mode/opt //caffe2/test:torch

Performance:

 binary_test.py has been updated, to run bfloat16 benchmarks using basic arithmetic functions

Differential Revision: D85186786

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166028
Approved by: https://github.com/Skylion007
2025-10-22 19:25:33 +00:00
jainapurva
2b748d0a56 Add operator name to output json (#164583)
The benchmarks, model_name on dashboard needs to be grouped with operator_name. This PR passed an additional argument operator_name to the json for grouping.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164583
Approved by: https://github.com/yangw-dev
2025-10-21 23:58:39 +00:00
Nicolas De Carli
51319ca090 [Pytorch] Add NEON Vectorized<uint> family of translation layers (#165690)
Summary:
Adding NEON specializations of Vectorized<T> for uint8, uint16, uint32 and uint64.

Correcness has been checked using test_ops.py

operator_benchmark_test.py, which uses the PyTorch API, shows significant enhancements in some operations:

Before:

uint8 mul: 1460.751us
uint8 add: 2359.565us
uint8 lsl: 2151.206us

After:

uint8 mul: 194.792us ---> 650% higher throughput
uint8 add: 195.609us ---> 1100% higher throughput
uint8 lsl: 186.249us ---> 1055% higher throughput

Test Plan:
Correctness:

buck2 test mode/opt //caffe2/test:test_ops
buck2 test mode/opt //caffe2/test:torch

Performance:

buck2 run mode/opt //caffe2/benchmarks/operator_benchmark/fb:operator_benchmark_test

Reviewed By: mcfi

Differential Revision: D84770153

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165690
Approved by: https://github.com/malfet
2025-10-21 21:46:55 +00:00
Nikita Shulga
6ece527fc5 [CI] Add aarch64 operator benchmark (#165585)
Running on Graviton4
Skip ConvTranspose1d benchmarks if PyTorch is compiled with ACL, due to https://github.com/pytorch/pytorch/issues/165654
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165585
Approved by: https://github.com/huydhn
2025-10-17 14:42:14 +00:00
Nicolas De Carli
cbc08c8993 Add NEON acceleration for Vectorized<int[8|16|32|64> (#165273)
Summary:
Adding NEON specializations of Vectorized<T> for int8, int16, int32 and int64.

Correcness has been checked using test_ops.py and the comprehensive torch test

operator_benchmark_test.py has been enhanced by adding cases of bitwise operations, boolean ops and integer ops.
The benchmark, which uses the PyTorch API, shows significant enhancements in a wide variety of operations:

Before:

bitwise xor: 779.882us
boolean any: 636.209us
boolean all: 538.621us
integer mul: 304.457us
integer asr: 447.997us

After:

bitwise xor: 680.221us ---> 15% higher throughput
boolean any: 391.468us ---> 63% higher throughput
boolean all: 390.189us ---> 38% higher throughput
integer mul: 193.532us ---> 57% higher throughput
integer asr: 179.929us---> 149% higher throughput

Test Plan:
Correctness:

buck2 test @mode/opt //caffe2/test:test_ops
buck2 test @mode/opt //caffe2/test:torch
buck2 test @mode/opt //caffe2/test/distributed/launcher/fb:fb_run_test

Performance:

buck2 run mode/opt //caffe2/benchmarks/operator_benchmark/fb:operator_benchmark_test

Differential Revision: D84424638

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165273
Approved by: https://github.com/malfet
2025-10-16 21:35:13 +00:00
Nikita Shulga
23fb7e9f4b [CI] Add arch prefix in front of op benchmark results (#165584)
To be able to run x86 and aarch64 benchmarks later on
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165584
Approved by: https://github.com/huydhn
ghstack dependencies: #165583
2025-10-16 01:50:52 +00:00
Yuanyuan Chen
8de85896e0 Enable ruff rule E721 (#165162)
`E721` checks for object type comparisons using == and other comparison operators. This is useful because it is recommended to use `is` for type comparisons.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165162
Approved by: https://github.com/Skylion007
2025-10-13 01:48:55 +00:00
PyTorch MergeBot
816fb7f48d Revert "Enable ruff rule E721 (#165162)"
This reverts commit 9e7c19f72b.

Reverted https://github.com/pytorch/pytorch/pull/165162 on behalf of https://github.com/pytorch-auto-revert due to Reverted automatically by pytorch's autorevert, to avoid this behaviour add the tag autorevert: disable ([comment](https://github.com/pytorch/pytorch/pull/165162#issuecomment-3393328271))
2025-10-11 13:25:40 +00:00
Yuanyuan Chen
9e7c19f72b Enable ruff rule E721 (#165162)
`E721` checks for object type comparisons using == and other comparison operators. This is useful because it is recommended to use `is` for type comparisons.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165162
Approved by: https://github.com/Skylion007
2025-10-11 06:43:53 +00:00
Klaus Zimmermann
fa54b08cd5 Replace setup.py install with pip install (#156711)
#156027 already replaced most use of `python setup.py install`.
This PR only adds a few more occurrences and adds `--no-build-isolation` in a few places.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156711
Approved by: https://github.com/atalman
2025-09-29 15:15:10 +00:00
jainapurva
54b38f3b46 Add operator benchmarking run to CI nightly (#162530)
This PR introduces a new "operator microbenchmark" CI workflow and GitHub Actions for operator microbenchmarks, updating test scripts and job matrices to support new parameters, and broadening the operator benchmark tests to include more data types, larger shapes, and gradient tests. The benchmark configurations now focus more on different cuda hardware and multiple dtypes (bf16, fp16, fp32), for both compile and eager mode.

**Benchmark Configuration and Coverage:**

* Expanded operator benchmark configurations in `addmm_test.py`, `bmm_test.py`, `matmul_test.py`, and `mm_test.py` to benchmark multiple dtypes on CUDA devices, in eager and compile mode, for forward and backward run. The configs with tag "long" for the above mentioned files are being run in CI.
* The CI benchmarking is running on various hardwares: H100, A100.
* The CI job also uploads the microbenchmarking outputs to a [HUD](https://hud.pytorch.org/benchmark/llms?repoName=pytorch%2Fpytorch&benchmarkName=PyTorch+operator+microbenchmark) dashboard.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162530
Approved by: https://github.com/huydhn

Co-authored-by: Huy Do <huydhn@gmail.com>
2025-09-29 00:46:38 +00:00
LifengWang
f7ea4975ab update the baseline data for the operator benchmark (#162693)
According to the results of the last four operator benchmark runs, we found that five models achieved more than a 30% improvement compared to the baseline. Therefore, we will update the operator benchmark baseline data.
We use the average results from the four runs as the new baseline for the five models.

And add a pull request trigger for the operator benchmark workflow

Benchmarking   Framework | Benchmarking   Module Name | Case Name | tag | run_backward | baseline   old | r1 | r2 | r3 | r4 | avg | speedup
-- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | --
PyTorch | add | add_M1_N1_K1_cpu | short | FALSE | 3.9497 | 2.57 | 2.54 | 2.38 | 2.31 | 2.45 | 1.61
PyTorch | functional.hardtanh | functional.hardtanh_dims(512	512)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 67.118 | 50.02 | 49.80 | 46.78 | 48.94 | 48.88 | 1.37
PyTorch | relu6 | relu6_dims(512	512)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 68.739 | 51.17 | 51.19 | 48.07 | 50.42 | 50.21 | 1.37
PyTorch | relu6 | relu6_dims(256	1024)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 69.1875 | 51.97 | 52.77 | 50.00 | 51.24 | 51.50 | 1.34
PyTorch | functional.hardtanh | functional.hardtanh_dims(256	1024)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 67.436 | 50.98 | 51.69 | 49.06 | 49.87 | 50.40 | 1.34

@chuanqi129 @huydhn @desertfire @jainapurva

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162693
Approved by: https://github.com/huydhn
2025-09-12 20:53:29 +00:00
jainapurva
5f66902ecf Fix operator benchmark issue#162708 (#162744)
This PR skips memory metric calculation for ops which don't take tensor input, fixing the operator_benchmark bug

Fixes https://github.com/pytorch/pytorch/issues/162708

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162744
Approved by: https://github.com/huydhn
2025-09-12 06:51:14 +00:00
jainapurva
af60398c3a Update the operator benchmarking, to benchmark using torch.compile (#161394)
This pull request enhances the PyTorch operator benchmarking suite by introducing support for benchmarking with `torch.compile` mode, in addition to existing Eager and JIT. It also adds peak memory measurement (fwd/bwd pass); improves the output format in JSON to be used by dashboard for reporting; and introduce some more CLI options. The new CLI flags introduced are:

- Added `--use-compile` CLI argument and corresponding logic to run benchmarks using `torch.compile`, including mutual exclusivity with `--use-jit`
- Added `--benchmark-name` argument for customizing the benchmark name in output
- Updated default value for `--output-json-for-dashboard` to `benchmark-results.json` for more predictable output file name

Sample command to run a single operator:
`python -m pt.mm_test --use-compile`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161394
Approved by: https://github.com/jbschlosser
2025-09-09 18:17:37 +00:00
Xuehai Pan
4dce5b71a0 [build] modernize build-frontend: python setup.py develop/install -> [uv ]pip install --no-build-isolation [-e ]. (#156027)
Modernize the development installation:

```bash
# python setup.py develop
python -m pip install --no-build-isolation -e .

# python setup.py install
python -m pip install --no-build-isolation .
```

Now, the `python setup.py develop` is a wrapper around `python -m pip install -e .` since `setuptools>=80.0`:

- pypa/setuptools#4955

`python setup.py install` is deprecated and will emit a warning during run. The warning will become an error on October 31, 2025.

- 9c4d383631/setuptools/command/install.py (L58-L67)

> ```python
> SetuptoolsDeprecationWarning.emit(
>     "setup.py install is deprecated.",
>     """
>     Please avoid running ``setup.py`` directly.
>     Instead, use pypa/build, pypa/installer or other
>     standards-based tools.
>     """,
>     see_url="https://blog.ganssle.io/articles/2021/10/setup-py-deprecated.html",
>     due_date=(2025, 10, 31),
> )
> ```

- pypa/setuptools#3849

Additional Resource:

- [Why you shouldn't invoke setup.py directly](https://blog.ganssle.io/articles/2021/10/setup-py-deprecated.html)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156027
Approved by: https://github.com/ezyang
2025-07-09 11:24:27 +00:00
Xuehai Pan
42015db6a9 [BE] fix typos in benchmarks/ (#156077)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156077
Approved by: https://github.com/Skylion007, https://github.com/malfet
ghstack dependencies: #156069
2025-06-17 13:12:18 +00:00
LifengWang
69a57d9486 add JSON output support for operator benchmark (#154410)
To better support the integration of operator benchmark performance data into the OSS benchmark database for the dashboard, I’ve added a JSON output format that meets the required specifications: https://github.com/pytorch/pytorch/wiki/How-to-integrate-with-PyTorch-OSS-benchmark-database#output-format
Since the current operator benchmark already has a flag `--output-json` to support saving the results into a JSON file, I add a new flag `--output-json-for-dashboard` for this feature.
At the same time, I renamed the `--output-dir` to `--output-csv` for a clearer and more intuitive expression.
An example of the JSON output of the operator benchmark.
```
[
  {
    "benchmark": {
      "name": "PyTorch operator benchmark - add_M1_N1_K1_cpu",
      "mode": "inference",
      "dtype": "float32",
      "extra_info": {
        "input_config": "M: 1, N: 1, K: 1, device: cpu"
      }
    },
    "model": {
      "name": "add_M1_N1_K1_cpu",
      "type": "micro-benchmark",
      "origins": [
        "pytorch"
      ]
    },
    "metric": {
      "name": "latency",
      "unit": "us",
      "benchmark_values": [
        2.074
      ],
      "target_value": null
    }
  },
  {
    "benchmark": {
      "name": "PyTorch operator benchmark - add_M64_N64_K64_cpu",
      "mode": "inference",
      "dtype": "float32",
      "extra_info": {
        "input_config": "M: 64, N: 64, K: 64, device: cpu"
      }
    },
    "model": {
      "name": "add_M64_N64_K64_cpu",
      "type": "micro-benchmark",
      "origins": [
        "pytorch"
      ]
    },
    "metric": {
      "name": "latency",
      "unit": "us",
      "benchmark_values": [
        9.973
      ],
      "target_value": null
    }
  },
]
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154410
Approved by: https://github.com/huydhn
2025-06-03 21:29:24 +00:00
Robert Burke
d2f6c6df1d unbreak fb:operator_benchmark_test (#152049)
Summary: unbreak fb:operator_benchmark_test

Test Plan: works on my machine

Differential Revision: D73540912

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152049
Approved by: https://github.com/hl475
2025-05-15 03:38:48 +00:00
Anthony Shoumikhin
e2f9759bd0 Fix broken URLs (#152237)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152237
Approved by: https://github.com/huydhn, https://github.com/malfet
2025-04-27 09:56:42 +00:00
LifengWang
fa5f556f88 [CI] enable operator benchmark on CPU (#143733)
This is to enable operator benchmark for CPU to track op level performance. This PR is motivated by PR: https://github.com/pytorch/pytorch/issues/120982 and investigate feasibility in https://github.com/pytorch/pytorch/pull/127216

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143733
Approved by: https://github.com/leslie-fang-intel, https://github.com/atalman, https://github.com/huydhn, https://github.com/malfet

Co-authored-by: diwei sun <diwei.sun@intel.com>
Co-authored-by: chuanqiw <chuanqi.wang@intel.com>
2025-03-21 16:46:03 +00:00
Aaron Gokaslan
a0ac63cbd9 [BE]: Apply ruff PERF403 to use dict comprehensions more often (#149257)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149257
Approved by: https://github.com/jansel
2025-03-18 00:46:07 +00:00
PyTorch MergeBot
24cfeec2c7 Revert "[BE]: Apply ruff PERF403 to use dict comprehensions more often (#149257)"
This reverts commit bfee141666.

Reverted https://github.com/pytorch/pytorch/pull/149257 on behalf of https://github.com/malfet due to Let's see if it helps restore compiler benchmark sanity, see 8bc7bd94a5/1 ([comment](https://github.com/pytorch/pytorch/pull/149257#issuecomment-2731133812))
2025-03-17 22:57:00 +00:00
Aaron Gokaslan
bfee141666 [BE]: Apply ruff PERF403 to use dict comprehensions more often (#149257)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149257
Approved by: https://github.com/jansel
2025-03-16 23:52:58 +00:00
Xuehai Pan
c73a92fbf5 [BE][CI] bump ruff to 0.9.2: multiline assert statements (#144546)
Reference: https://docs.astral.sh/ruff/formatter/black/#assert-statements

> Unlike Black, Ruff prefers breaking the message over breaking the assertion, similar to how both Ruff and Black prefer breaking the assignment value over breaking the assignment target:
>
> ```python
> # Input
> assert (
>     len(policy_types) >= priority + num_duplicates
> ), f"This tests needs at least {priority+num_duplicates} many types."
>
>
> # Black
> assert (
>     len(policy_types) >= priority + num_duplicates
> ), f"This tests needs at least {priority+num_duplicates} many types."
>
> # Ruff
> assert len(policy_types) >= priority + num_duplicates, (
>     f"This tests needs at least {priority + num_duplicates} many types."
> )
> ```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144546
Approved by: https://github.com/malfet
2025-02-27 20:46:16 +00:00
Arash Pakbin
f3ddc08ddc Additional operators in operator benchmark (#145625)
The list of added operators:
add_, addcmul, arange, baddbmm…, bmm, clamp, div, div_, gelu, index_add, logical_and, mul_, sub_, topk, where

This pull request is the same as a previous one: https://github.com/pytorch/pytorch/pull/145121 which inadvertently got deleted while merging.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145625
Approved by: https://github.com/jeffdaily
2025-01-26 19:20:02 +00:00
Aaron Orenstein
07669ed960 PEP585 update - benchmarks tools torchgen (#145101)
This is one of a series of PRs to update us to PEP585 (changing Dict -> dict, List -> list, etc).  Most of the PRs were completely automated with RUFF as follows:

Since RUFF UP006 is considered an "unsafe" fix first we need to enable unsafe fixes:

```
--- a/tools/linter/adapters/ruff_linter.py
+++ b/tools/linter/adapters/ruff_linter.py
@@ -313,6 +313,7 @@
                     "ruff",
                     "check",
                     "--fix-only",
+                    "--unsafe-fixes",
                     "--exit-zero",
                     *([f"--config={config}"] if config else []),
                     "--stdin-filename",
```

Then we need to tell RUFF to allow UP006 (as a final PR once all of these have landed this will be made permanent):

```
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -40,7 +40,7 @@

 [tool.ruff]
-target-version = "py38"
+target-version = "py39"
 line-length = 88
 src = ["caffe2", "torch", "torchgen", "functorch", "test"]

@@ -87,7 +87,6 @@
     "SIM116", # Disable Use a dictionary instead of consecutive `if` statements
     "SIM117",
     "SIM118",
-    "UP006", # keep-runtime-typing
     "UP007", # keep-runtime-typing
 ]
 select = [
```

Finally running `lintrunner -a --take RUFF` will fix up the deprecated uses.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145101
Approved by: https://github.com/bobrenjc93
2025-01-18 05:05:07 +00:00
Arash Pakbin
a37db5ae39 operator benchmark change parsing from regex based to manual (#144297)
The regex-based parser would erroneously split on commas in nested brackets, for example, it would do the following parse which is wrong:
'M: [(32, 16), (64, 32)], ZPB: 2' -> ['M: [(32, 16)', ' (64, 32)]', 'ZPB: 2']

The new manual parser handles this situation the right way:
'M: [(32, 16), (64, 32)], ZPB: 2' -> ['M: [(32, 16), (64, 32)]', 'ZPB: 2']

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144297
Approved by: https://github.com/XuehaiPan, https://github.com/jeffdaily
2025-01-10 19:15:36 +00:00
Arash Pakbin
86c3370bc3 operator benchmark: write output to a JSON (#142809)
This pull request adds the functionality of writing the output of operator benchmark to an optional JSON file specified. The output is still printed in the terminal like before, but the user has the option of saving it in a JSON file as well.

Main part of the functionality is implemented using the function _perf_result_to_dict which outputs a dictionary to be put inside a JSON file. Each dictionary corresponds to a single test.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142809
Approved by: https://github.com/albanD
2024-12-14 01:42:00 +00:00
Tom Ritchford
498a7808ff Fix unused Python variables outside torch/ and test/ (#136359)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136359
Approved by: https://github.com/albanD
2024-12-11 17:10:23 +00:00
Xuehai Pan
267f82b860 [BE] Format .ci/ / .github/ / benchmarks/ / functorch/ / tools/ / torchgen/ with ruff format (#132577)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132577
Approved by: https://github.com/malfet
2024-10-11 18:30:26 +00:00
Pavel Belevich
a3e1416c05 Fix out_tensor device in diag_test.py (#134020)
This benchmark fails if device='cuda' but out_tensor is on cpu

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134020
Approved by: https://github.com/soulitzer
2024-08-21 20:43:39 +00:00
laithsakka
7673ee5456 remove benchmarks/__init__.py (#133390)
trying to address https://github.com/pytorch/pytorch/issues/133377

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133390
Approved by: https://github.com/kit1980, https://github.com/malfet, https://github.com/ezyang
2024-08-15 19:08:10 +00:00
laithsakka
f5e704a6f2 Add instruction count benchmark to run on pull requests (#131475)
This PR only adds the execution of the benchmarks on this PR and print results, following diffs will add checking out head~1 and running it and comparing.

to access results goto test pr_time_benchmarks and inspect logs:
you should see
```
+ echo 'benchmark results on current PR: '
benchmark results on current PR:
+ cat /var/lib/jenkins/workspace/test/test-reports/pr_time_benchmarks_before.txt
update_hint_regression,instruction_count,27971461254
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131475
Approved by: https://github.com/ezyang
2024-08-12 05:20:26 +00:00
Xu Zhao
4eee2e7a6d [operator_benchmark] Remove TARGETS from broken benchmarks (#131460)
Summary:
Remove operator_benchmark caffe2 build due to the removal of caffe2: 2fd75667b4

Plus, we are deleting the TARGETS file from broken benchmarks that we do not intend to maintain.

Test Plan: Sandcastle CI

Differential Revision: D60086216

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131460
Approved by: https://github.com/vmpuri
2024-07-23 20:06:08 +00:00
Xuehai Pan
c0ed38e644 [BE][Easy][3/19] enforce style for empty lines in import segments in benchmarks/ (#129754)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129754
Approved by: https://github.com/ezyang
2024-07-17 14:34:42 +00:00
Xuehai Pan
4d7bf72d93 [BE][Easy] fix ruff rule needless-bool (SIM103) (#130206)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130206
Approved by: https://github.com/malfet
2024-07-14 08:17:52 +00:00
diwei sun
62311257ad Add 1 test case for Convtranspose1D in op microbenchmark (#127216)
Operator Convtransposd1d suffers performance regression with specific shape, #120982. Then we'd like to have this shape included into op level benchmark in this PR.

I reproduced the regression that convtranspos1d with shape [2016, 1026, 1024, 256, 1, 224]. Here is the summary:

Hardware info: Intel SPR8480-56cores per socket with frequency=2.1G.
Performance comparison between torch 1.13 vs. torch 2.2
Benchmarking **PyTorch1.13**: ConvTranspose1d Mode: Eager
Name: ConvTranspose1d_IC2016_OC1026_kernel1024_stride256_N1_L224_cpu
Input: IC: 2016, OC: 1026, kernel: 1024, stride: 256, N: 1, L: 224, device: cpu
Forward Execution Time (s) : **0.96s**

Benchmarking **PyTorch2.2:** ConvTranspose1d
Mode: Eager
Name: ConvTranspose1d_IC2016_OC1026_kernel1024_stride256_N1_L224_cpu
Input: IC: 2016, OC: 1026, kernel: 1024, stride: 256, N: 1, L: 224, device: cpu
Forward Execution Time (s) : **7.988s**

Also benchmarking for 7 rounds to check the variance.

  | Round1 | Round2 | Round3 | Round4 | Round5 | Round6 | Round7 | Normalized   Variance
-- | -- | -- | -- | -- | -- | -- | -- | --
Pytorch1.13 | 0.971 | 0.972 | 0.969 | 0.970 | 0.972 | 0.970 | 0.971 | 0.0002%
Pytorch 2.2 | 8.064 | 8.053 | 8.027 | 7.927 | 7.971 | 7.929 | 7.902 | 0.0059%
Ratio v2.2 vs.   v1.13(Lower is better) | 8.31 | 8.28 | 8.29 | 8.18 | 8.20 | 8.18 | 8.14 |  

Reproduce script:
numctl -N 0 python -m pt.conv_test
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127216
Approved by: https://github.com/chuanqi129, https://github.com/jgong5, https://github.com/atalman
2024-06-12 05:33:54 +00:00
cyy
2fd75667b4 [Caffe2]Remove Caffe2 scripts and benchmarks (#126747)
Due to removal of Caffe2.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126747
Approved by: https://github.com/ezyang, https://github.com/malfet
2024-06-05 23:46:31 +00:00
Xuehai Pan
26f4f10ac8 [5/N][Easy] fix typo for usort config in pyproject.toml (kown -> known): sort torch (#127126)
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127126
Approved by: https://github.com/kit1980
2024-05-27 14:49:57 +00:00
PyTorch MergeBot
55c0ab2887 Revert "[5/N][Easy] fix typo for usort config in pyproject.toml (kown -> known): sort torch (#127126)"
This reverts commit 7763c83af6.

Reverted https://github.com/pytorch/pytorch/pull/127126 on behalf of https://github.com/XuehaiPan due to Broken CI ([comment](https://github.com/pytorch/pytorch/pull/127126#issuecomment-2133044286))
2024-05-27 09:22:08 +00:00
Xuehai Pan
7763c83af6 [5/N][Easy] fix typo for usort config in pyproject.toml (kown -> known): sort torch (#127126)
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127126
Approved by: https://github.com/kit1980
ghstack dependencies: #127122, #127123, #127124, #127125
2024-05-27 04:22:18 +00:00
Xuehai Pan
0dae2ba5bd [2/N][Easy] fix typo for usort config in pyproject.toml (kown -> known): sort caffe2 (#127123)
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127123
Approved by: https://github.com/Skylion007
ghstack dependencies: #127122
2024-05-25 18:26:34 +00:00
Aaron Gokaslan
29cc293725 [BE]: FURB142 - Remove set mutations. Use set update (#124551)
Uses set mutation methods instead of manually reimplementing (update, set_difference etc).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124551
Approved by: https://github.com/ezyang
2024-04-21 14:12:33 +00:00
Aaron Gokaslan
5a1216bb2e [BE]: Update ruff to 0.4.1 (#124549)
Update ruff to 0.4.1 .
This version fixes a lot false negatives/false positives, is 20-40% faster, and has various other bug fixes.

Below is a before and after table showing the execution time of ruff lint and ruff format in milliseconds courtesy of https://astral.sh/blog/ruff-v0.4.0

| Repository                                         | Linter (v0.3) | Linter (v0.4) | Formatter (v0.3) | Formatter (v0.4) |
|----------------------------------------------------|---------------|---------------|------------------|------------------|
| [pytorch/pytorch](https://github.com/pytorch/pytorch) | 328.7         | 251.8         | 351.1            | 274.9            |

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124549
Approved by: https://github.com/ezyang
2024-04-21 14:06:23 +00:00
baocheny
edd03f975f highlight readme code block (#120228)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120228
Approved by: https://github.com/mikaylagawarecki
2024-02-22 21:23:08 +00:00
sanchitintel
8852bb561c More efficient multi-threading in Softmax & LogSoftmax CPU kernels (#116367)
### Summary
In #85398, while fixing a bug (which was _not caused by, but was exposed by_ AVX512 implementation) in `_vec_logsoftmax_lastdim`, I had made some revisions to use more threads in some cases, but was asked to roll back [those changes](https://github.com/pytorch/pytorch/pull/85398#discussion_r1087680237) during the PR's review.
At the time, landing that PR asap seemed essential, so I agreed to roll-back that change,

In some cases, more threads can be used than are being used with the current approach.
<strike>In this PR, I'm reintroducing those changes, which are geared towards more efficient multi-threading.</strike>.
On second thought, even for other softmax kernels besides `_vec_log_softmax_lastdim` and `_vec_softmax_lastdim`, we could simply use `grain_size` of 0 or 1, instead of complicating code because `CHUNK_SIZE` for each thread is already being computed as per some heuristic, and if `grain_size` would be `0`, then work among the OpenMP threads (which, BTW, stay constant in number, unless explicitly changed, since we don't use the OpenMP `num_threads` clause in PyTorch) would be distributed equitably, thus yielding the similar speedup as the approach in the first commit of this PR.
I've also added op-level benchmarks pertaining to example input shapes in this PR.

### Benchmarks

Machine - Intel(R) Xeon(R) Platinum 8468H (Xeon 4th gen, formerly codenamed Sapphire Rapids)
One socket of 48 physical cores was used, with & without HyperThreading.
Intel OpenMP & tcmalloc were preloaded.

Softmax benchmarks can be run with the following command, but the relevant benchmarks are the last dim ones -
`KMP_AFFINITY=granularity=fine,compact,1,0 KMP_BLOCKTIME=1 KMP_SETTINGS=1 OMP_NUM_THREADS=48 MKL_NUM_THREADS=48 numactl --membind=0 --cpunodebind=0 python -m pt.softmax_test --tag-filter all`

#### Already existing benchmarks
|Benchmark name (dim is 1, by default) | Previous implementation's latency (in ms) | This implementation's latency (in ms)|Speedup Percentage = (old-new)*100/old | Speedup ratio (old/new)|
|-------------|--------|-------|----------------------------|----------|
|Softmax_N1_C3_H256_W256_cpu|31.364|11.594|63.03%  |2.705|
|Softmax_N4_C3_H256_W256_cpu|34.475|24.966| 27.58%|1.380|
|Softmax_N8_C3_H512_W256_cpu|94.044|78.372|16.66%|1.199|
|Softmax2d_N8_C3_H512_W256_cpu|100.195|79.529|20.62%|1.259|

#### Some of the following benchmarks are being added in this PR
|Benchmark name| Previous implementation's latency (in ms) | This implementation's latency (in ms)|Speedup percentage = (old-new)*100/old| Speedup ratio  (old/new) |
|-------------|--------|-------|----------------------------|--------------------|
|LogSoftmax_M128_N128_dim1_cpu|7.629|6.475|15.12%| 1.178|
|LogSoftmax_M48_N128_dim1_cpu|6.848|5.969|12.83%| 1.147|
|LogSoftmax_M16_N1024_dim1_cpu|7.004|6.322|9.73%| 1.107|
|LogSoftmax_M32_N1024_dim1_cpu|7.037|6.558|6.80%| 1.073|
|LogSoftmax_M48_N1024_dim1_cpu|7.155|6.773|5.33%|1.056|
|LogSoftmax_M16_N512_dim1_cpu|6.797|5.862|13.75%|1.159|
|LogSoftmax_M32_N512_dim1_cpu|7.223|6.202|14.13%|1.164|
|LogSoftmax_M48_N512_dim1_cpu|7.159|6.301|11.98%|1.136|
|LogSoftmax_M16_N256_dim1_cpu|6.842|5.682|16.95%|1.204|
|LogSoftmax_M32_N256_dim1_cpu|6.840|6.086|11.02%|1.123|
|LogSoftmax_M48_N256_dim1_cpu|7.005|6.031|13.94%|1.161|

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116367
Approved by: https://github.com/jgong5, https://github.com/ezyang
2024-01-17 02:26:29 +00:00
Aaron Gokaslan
bd10fea79a [BE]: Enable F821 and fix bugs (#116579)
Fixes #112371

I tried to fix as many of the bugs as I could, a few I could not figure out what the proper fix for them was though and so I left them with noqas.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116579
Approved by: https://github.com/ezyang
2024-01-01 08:40:46 +00:00
baocheny
e01e00fba8 fix code spell (#116530)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116530
Approved by: https://github.com/albanD
2023-12-29 12:58:38 +00:00
Aaron Gokaslan
660e8060ad [BE]: Update ruff to 0.285 (#107519)
This updates ruff to 0.285 which is faster, better, and have fixes a bunch of false negatives with regards to fstrings.

I also enabled RUF017 which looks for accidental quadratic list summation. Luckily, seems like there are no instances of it in our codebase, so enabling it so that it stays like that. :)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107519
Approved by: https://github.com/ezyang
2023-08-22 23:16:38 +00:00