Commit Graph

1215 Commits

Author SHA1 Message Date
Wang, Chuanqi
0d3a4f7155 [CD] Enable Inductor performance test for xpu (#166289)
Add Dynamo benchmark performance tests for XPU backend

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166289
Approved by: https://github.com/EikanWang, https://github.com/atalman
2025-10-31 10:52:07 +00:00
Shunting Zhang
0db6bcc015 Fix accuracy for layernorm/rmsnorm benchmarking (#166005)
Example command:
    python benchmarks/dynamo/genai_layers/benchmark.py --exit-on-accuracy-failure --tolerance=1e-2 rmsnorm_backward

Fix the accuracy problem for layernorm/rmsnorm fwd/bwd.
Also fix some quack calls (maybe due to quack API change)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166005
Approved by: https://github.com/BoyuanFeng
2025-10-24 18:14:51 +00:00
Shunting Zhang
673060beae [inductor] turn Inductor deterministic mode on with torch.use_deterministic_algorithms (#165950)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165950
Approved by: https://github.com/v0i0, https://github.com/eellison
2025-10-23 02:48:42 +00:00
Jason Ansel
3c3b278872 [reland][fx] Move Node._prepend/Node._remove_from_list to C++ (#165882)
Relands #148261 that was reverted by #150542

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165882
Approved by: https://github.com/ezyang
2025-10-21 19:43:55 +00:00
Tugsbayasgalan Manlaibaatar
c73f5080de Migrating some more callsites (#163580)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163580
Approved by: https://github.com/avikchaudhuri
ghstack dependencies: #165582
2025-10-19 15:52:17 +00:00
Yuanyuan Chen
3255e7872b Enable all flake8-logging-format rules (#164655)
These rules are enabled by removing existing suppressions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164655
Approved by: https://github.com/janeyx99, https://github.com/mlazos
2025-10-19 00:59:28 +00:00
Yuanyuan Chen
e595136187 Enable PLC1802 on ruff (#165813)
This PR enables ruff check `PLC1802`, which detects len calls on sequences in a boolean test context.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165813
Approved by: https://github.com/ezyang
2025-10-18 05:44:14 +00:00
Han, Xu
bfcdbd0a97 fix wrong accuracy_status when exception. (#165731)
When I debug `XPU` accruacy issue, I found the script output wrong accuracy_status.
When the `try` block raise an exception, we should process the exception, but not return the `fail_accuracy`.

Before fixing, it returned as `fail_accuracy`:
<img width="1109" height="216" alt="image" src="https://github.com/user-attachments/assets/385c354f-fbf6-48e4-a1be-3e37e987341b" />

After fixing, it returned the exception message:
<img width="1101" height="292" alt="image" src="https://github.com/user-attachments/assets/f18c0e3c-8358-4ec7-a6bb-c2e01b69d27f" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165731
Approved by: https://github.com/Stonepia, https://github.com/chuanqi129, https://github.com/Lucaskabela
2025-10-17 16:37:06 +00:00
Yuanyuan Chen
e925dfcc6b Enable all SIM rules except disabled ones (#164645)
`SIM` rules are useful for simplifying boolean expressions and enhances code readability.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164645
Approved by: https://github.com/ezyang, https://github.com/mlazos
2025-10-17 07:27:11 +00:00
Yuanyuan Chen
b2953f5643 [9/N] Apply ruff UP035 rule (#165515)
This is follow-up of #165214 to continue applying ruff UP035 rule to the code base.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165515
Approved by: https://github.com/Lucaskabela
2025-10-17 00:09:51 +00:00
Jeff Daily
7a97832585 [ROCm] Add more timm models, forward fix #165381 (#165569)
PR #165381 added timm models to cuda and cpu expected accuracy files. ROCm expected accuracy files were not updated.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165569
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-10-15 18:11:21 +00:00
Yiming Zhou
47524dcc48 [benchmark] Add more timm models (#165381)
Added following models to timm_models

- [convnextv2_nano.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k)
- [vit_base_patch14_dinov2.lvd142m](https://huggingface.co/timm/vit_base_patch14_dinov2.lvd142m)
- [ViT-B-16-SigLIP-i18n-256](https://huggingface.co/timm/ViT-B-16-SigLIP-i18n-256)
- [deit_tiny_patch16_224.fb_in1k](https://huggingface.co/timm/deit_tiny_patch16_224.fb_in1k)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165381
Approved by: https://github.com/BoyuanFeng
2025-10-15 01:19:10 +00:00
Yiming Zhou
102b7885ff Add option to run AOT Precompile in benchmark (#164906)
Use the existing benchmark infra to get some signals for AOT precompile pass rate on OSS models. Here we also measure and log the loading time.

```
python ./benchmarks/dynamo/huggingface.py --accuracy --inference --aot-precompile

python ./benchmarks/dynamo/timm_models.py --accuracy --inference --aot-precompile

python ./benchmarks/dynamo/torchbench.py --accuracy --inference --aot-precompile
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164906
Approved by: https://github.com/zhxchen17
2025-10-14 20:59:55 +00:00
Huy Do
5ad7611b52 Reland vision pinned commit hash update (#164492)
Redo https://github.com/pytorch/pytorch/pull/154694

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164492
Approved by: https://github.com/yangw-dev
2025-10-12 04:53:27 +00:00
Shunting Zhang
5171f14064 [inductor] verify determinism with inductor benchmark script (#164904)
Verify the deterministic mode with torch.compile benchmark scripts.

Here is what my testing script does (pasted in the end):
- run a model in default mode, save it's result
- run the model again in default mode, but distort the benchmarking results. Compare it with the saved result.
- Do the above again in deterministic mode.

I tried to test a few modes
- BertForMaskedLM and GoogleFnet: I can repro the numeric change by distorting the benchnmark result in the default mode. The non-determinism is gone in the deterministic mode
- DistillGPT2: I can not repro the numeric change by distorting the benchmarking result in the default mode. It does not surprise me much. Reduction order change does not always cause numeric change.

```
model=GoogleFnet

export TORCHINDUCTOR_WRITE_ARE_DETERMINISTIC_ALGORITHMS_ENABLED=0
export TORCHINDUCTOR_FORCE_DISABLE_CACHES=1  # disable autotune cache
export TORCHINDUCTOR_FX_GRAPH_REMOTE_CACHE=0
export TORCHINDUCTOR_FX_GRAPH_CACHE=0
export TORCHINDUCTOR_CACHE_DIR=/tmp/torchinductor_shunting/
export TORCHINDUCTOR_BENCHMARK_KERNEL=1
export TORCHINDUCTOR_UNIQUE_KERNEL_NAMES=1
export INDUCTOR_TEST_DISABLE_FRESH_CACHE=1

# Non deterministic mode
# --float32 rather than --amp to make it easier to repro non-deterministic
echo "Save results for non-deterministic mode"
python benchmarks/dynamo/huggingface.py --backend inductor --float32 --accuracy --only $model --training --disable-cudagraphs --save-model-outputs-to=/tmp/saved-non-deterministic.pkl

echo "Compare results with distorted benchmarking in non-deterministic mode"
TORCHINDUCTOR_DISTORT_BENCHMARKING_RESULT=inverse python benchmarks/dynamo/huggingface.py --backend inductor --float32 --accuracy --only $model --training --disable-cudagraphs --compare-model-outputs-with=/tmp/saved-non-deterministic.pkl

echo "Save results for deterministic mode"
TORCHINDUCTOR_DETERMINISTIC=1 python benchmarks/dynamo/huggingface.py --backend inductor --float32 --accuracy --only $model --training --disable-cudagraphs --save-model-outputs-to=/tmp/saved-deterministic.pkl

echo "Compare results with distorted benchmarking in deterministic mode"
TORCHINDUCTOR_DETERMINISTIC=1 TORCHINDUCTOR_DISTORT_BENCHMARKING_RESULT=inverse python benchmarks/dynamo/huggingface.py --backend inductor --float32 --accuracy --only $model --training --disable-cudagraphs --compare-model-outputs-with=/tmp/saved-deterministic.pkl
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164904
Approved by: https://github.com/jansel, https://github.com/v0i0
2025-10-12 00:03:42 +00:00
PyTorch MergeBot
d2cb183344 Revert "[inductor] verify determinism with inductor benchmark script (#164904)"
This reverts commit a3c700656f.

Reverted https://github.com/pytorch/pytorch/pull/164904 on behalf of https://github.com/huydhn due to Sorry for reverting your PR but there seems to be some failed vLLM failures coming out of this ([comment](https://github.com/pytorch/pytorch/pull/164904#issuecomment-3388443678))
2025-10-10 06:23:07 +00:00
Laith Sakka
7f2a902ea2 more sizelike deprecation (#164889)
remove expext_size c++ bindings and usages

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164889
Approved by: https://github.com/mlazos
ghstack dependencies: #164884, #164885, #164886, #164887, #164888
2025-10-10 03:45:06 +00:00
Shunting Zhang
a3c700656f [inductor] verify determinism with inductor benchmark script (#164904)
Verify the deterministic mode with torch.compile benchmark scripts.

Here is what my testing script does (pasted in the end):
- run a model in default mode, save it's result
- run the model again in default mode, but distort the benchmarking results. Compare it with the saved result.
- Do the above again in deterministic mode.

I tried to test a few modes
- BertForMaskedLM and GoogleFnet: I can repro the numeric change by distorting the benchnmark result in the default mode. The non-determinism is gone in the deterministic mode
- DistillGPT2: I can not repro the numeric change by distorting the benchmarking result in the default mode. It does not surprise me much. Reduction order change does not always cause numeric change.

```
model=GoogleFnet

export TORCHINDUCTOR_WRITE_ARE_DETERMINISTIC_ALGORITHMS_ENABLED=0
export TORCHINDUCTOR_FORCE_DISABLE_CACHES=1  # disable autotune cache
export TORCHINDUCTOR_FX_GRAPH_REMOTE_CACHE=0
export TORCHINDUCTOR_FX_GRAPH_CACHE=0
export TORCHINDUCTOR_CACHE_DIR=/tmp/torchinductor_shunting/
export TORCHINDUCTOR_BENCHMARK_KERNEL=1
export TORCHINDUCTOR_UNIQUE_KERNEL_NAMES=1
export INDUCTOR_TEST_DISABLE_FRESH_CACHE=1

# Non deterministic mode
# --float32 rather than --amp to make it easier to repro non-deterministic
echo "Save results for non-deterministic mode"
python benchmarks/dynamo/huggingface.py --backend inductor --float32 --accuracy --only $model --training --disable-cudagraphs --save-model-outputs-to=/tmp/saved-non-deterministic.pkl

echo "Compare results with distorted benchmarking in non-deterministic mode"
TORCHINDUCTOR_DISTORT_BENCHMARKING_RESULT=inverse python benchmarks/dynamo/huggingface.py --backend inductor --float32 --accuracy --only $model --training --disable-cudagraphs --compare-model-outputs-with=/tmp/saved-non-deterministic.pkl

echo "Save results for deterministic mode"
TORCHINDUCTOR_DETERMINISTIC=1 python benchmarks/dynamo/huggingface.py --backend inductor --float32 --accuracy --only $model --training --disable-cudagraphs --save-model-outputs-to=/tmp/saved-deterministic.pkl

echo "Compare results with distorted benchmarking in deterministic mode"
TORCHINDUCTOR_DETERMINISTIC=1 TORCHINDUCTOR_DISTORT_BENCHMARKING_RESULT=inverse python benchmarks/dynamo/huggingface.py --backend inductor --float32 --accuracy --only $model --training --disable-cudagraphs --compare-model-outputs-with=/tmp/saved-deterministic.pkl
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164904
Approved by: https://github.com/jansel, https://github.com/v0i0
ghstack dependencies: #164801, #164532
2025-10-10 00:00:58 +00:00
Boyuan Feng
90b4e130d6 [Benchmark] cleanup torchbench models (#164816)
Prune models from TorchInductor dashboard to reduce ci cost. This PR prunes torchbench models according to the [doc](https://docs.google.com/document/d/1nLPNNAU-_M9Clx9FMrJ1ycdPxe-xRA54olPnsFzdpoU/edit?tab=t.0), which removes timm and huggingface models from torchbench.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164816
Approved by: https://github.com/anijain2305, https://github.com/seemethere, https://github.com/huydhn, https://github.com/malfet
2025-10-09 00:31:25 +00:00
Boyuan Feng
83458197d1 [Benchmark] remove old timm models from benchmark (#164805)
Prune models from TorchInductor dashboard to reduce ci cost. This PR prunes for timm models according to the [doc](https://docs.google.com/document/d/1nLPNNAU-_M9Clx9FMrJ1ycdPxe-xRA54olPnsFzdpoU/edit?tab=t.0), which reduces from 60 to 14 models.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164805
Approved by: https://github.com/anijain2305, https://github.com/seemethere, https://github.com/huydhn, https://github.com/malfet
2025-10-08 17:14:58 +00:00
PyTorch MergeBot
1927783aa3 Revert "Reland vision pinned commit hash update (#164492)"
This reverts commit 6861a27062.

Reverted https://github.com/pytorch/pytorch/pull/164492 on behalf of https://github.com/izaitsevfb due to see autorevert msg above, inductor breakage is legit ([comment](https://github.com/pytorch/pytorch/pull/164492#issuecomment-3379537888))
2025-10-08 04:38:26 +00:00
Boyuan Feng
f76fdcaaf8 [Benchmark] cleanup huggingface models (#164815)
Prune models from TorchInductor dashboard to reduce ci cost. This PR prunes for hugging face models according to the [doc](https://docs.google.com/document/d/1nLPNNAU-_M9Clx9FMrJ1ycdPxe-xRA54olPnsFzdpoU/edit?tab=t.0), which reduces from 46 to 27 models.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164815
Approved by: https://github.com/anijain2305, https://github.com/seemethere, https://github.com/huydhn, https://github.com/malfet
2025-10-08 03:21:04 +00:00
Huy Do
6861a27062 Reland vision pinned commit hash update (#164492)
Redo https://github.com/pytorch/pytorch/pull/154694

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164492
Approved by: https://github.com/yangw-dev
2025-10-07 22:45:05 +00:00
PyTorch MergeBot
afee8062d5 Revert "Fix mesh.get_local_rank when it is > 1d (#164473)"
This reverts commit 83d71dfb2f.

Reverted https://github.com/pytorch/pytorch/pull/164473 on behalf of https://github.com/izaitsevfb due to appears to be causing vision_maskrcnn regression ([comment](https://github.com/pytorch/pytorch/pull/164473#issuecomment-3374738997))
2025-10-07 00:37:41 +00:00
PyTorch MergeBot
5d7360bb03 Revert "Enable all SIM rules except disabled ones (#164645)"
This reverts commit 321e602692.

Reverted https://github.com/pytorch/pytorch/pull/164645 on behalf of https://github.com/izaitsevfb due to causes lint failures ([comment](https://github.com/pytorch/pytorch/pull/164645#issuecomment-3369274351))
2025-10-05 19:32:21 +00:00
Yuanyuan Chen
321e602692 Enable all SIM rules except disabled ones (#164645)
`SIM` rules are useful for simplifying boolean expressions and enhances code readability.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164645
Approved by: https://github.com/ezyang
2025-10-05 07:38:25 +00:00
Francisco Massa
83d71dfb2f Fix mesh.get_local_rank when it is > 1d (#164473)
Previously, we would not take the arguments passed by get_local_rank into account. This means that we wouldn't be able to trace this call if we had a device_mesh > 1d

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164473
Approved by: https://github.com/xmfan, https://github.com/Skylion007
2025-10-04 11:27:55 +00:00
Jeff Daily
412c6d28ec [ROCm][CI] additional dynamo benchmarks for inductor-periodic (#164279)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164279
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-10-04 00:55:17 +00:00
PyTorch MergeBot
0319556a35 Revert "[vision hash update] update the pinned vision hash (#154694)"
This reverts commit bcafea5c92.

Reverted https://github.com/pytorch/pytorch/pull/154694 on behalf of https://github.com/yangw-dev due to break the unittest for inductor with improved, update benchmarks/dynamo/ci_expected_accuracy/inductor_torchbench_inference.csv, see failure example https://github.com/pytorch/pytorch/actions/runs/18185852421/job/51776537817 ([comment](https://github.com/pytorch/pytorch/pull/154694#issuecomment-3362285901))
2025-10-02 17:32:04 +00:00
PyTorch UpdateBot
bcafea5c92 [vision hash update] update the pinned vision hash (#154694)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned vision hash.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154694
Approved by: https://github.com/pytorchbot

Co-authored-by: Huy Do <huydhn@gmail.com>
2025-10-02 07:02:40 +00:00
Laith Sakka
b377c9e365 graph break on tolist if capture_scalar_outputs is false (#163807)
address https://github.com/pytorch/pytorch/issues/163798

its problematic to not graph break because:
1. break current contract.
2. well dynamo trace then we have .item call then if we ever re-trace later in autograd for example we hit a
 failure (We do not know where to graph break at that point)! see the added unit test.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163807
Approved by: https://github.com/bobrenjc93
2025-09-28 04:02:52 +00:00
Arsh Zahed
254d2864d6 Add runtime_overhead PR Time Benchmark (#163866)
This adds a PR time benchmark that checks for runtime overhead on a very small graph. This will help track regressions in runtime overhead.

Example Results:
```
runtime_overhead_inductor,instruction_count,222645
runtime_overhead_inductor_inference_mode,instruction_count,234998
runtime_overhead_inductor_requires_grad,instruction_count,293556
runtime_overhead_inductor_requires_grad_backward,instruction_count,78181
runtime_overhead_inductor_dynamic,instruction_count,234870
runtime_overhead_inductor_inference_mode_dynamic,instruction_count,248711
runtime_overhead_inductor_requires_grad_dynamic,instruction_count,309979
runtime_overhead_inductor_requires_grad_backward_dynamic,instruction_count,77599
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163866
Approved by: https://github.com/jansel, https://github.com/mlazos, https://github.com/anijain2305
2025-09-27 03:26:59 +00:00
Yidi Wu
21a41edd4f Add fake_impl for _native_multi_head_attention (#163700)
Test Plan: See added test in test_export.py

Differential Revision: D83099187

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163700
Approved by: https://github.com/angelayi
2025-09-25 19:01:27 +00:00
angelayi
dad54ca7c0 Add mistral/gpt-oss to benchmarks (#163565)
Potential issues
* gpt-oss-20b is probably too big (I can't run on my devserver)
* Mistral requires HF authentication
* Mistral also takes a while to run the performance checks (need to wait for CI)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163565
Approved by: https://github.com/huydhn
2025-09-24 06:12:36 +00:00
James Wu
bfe9e60ffb Simplify PrecompileContext to no longer be a CacheArtifactManager (#162886)
Summary:
This diff does a big refactor of PrecompileContext to make it considerably simpler: instead of being a CacheArtifactManager and managing a bunch of bytes, it simply stores two things: dynamo cache entries and backend cache entries. When asked, it stitches them together into PrecompileCacheEntries, which are stored by DynamoCache.

This structure then allows us to register DynamoCache to the regular Megacache API, instead of having two separate APIs that are confusing. It also lets us remove the autotune cache integration, since MegaCache API will automatically store autotune cache entries.

The intent here is that users who want to use caching precompile will simply be able to use torch.compiler.save_cache_artifacts as before, just with `torch.dynamo.config.caching_precompile` set to True. They can also directly interact with PrecompileContext if they wish to specifically only load Precompile entries, using PrecompileContext.create_cache_entries().

Saving single entries and such with DynamoCache still works normally.

Test Plan:
All existing unit tests pass.

Rollback Plan:

Differential Revision: D82380307

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162886
Approved by: https://github.com/zhxchen17
2025-09-20 01:24:37 +00:00
dependabot[bot]
33e6c5a93d
[Dependabot] Update(deps): Bump transformers from 4.54.0 to 4.56.0 in /.ci/docker/ci_commit_pins (#162063)
* [Dependabot] Update(deps): Bump transformers

Bumps [transformers](https://github.com/huggingface/transformers) from 4.54.0 to 4.56.0.
- [Release notes](https://github.com/huggingface/transformers/releases)
- [Commits](https://github.com/huggingface/transformers/compare/v4.54.0...v4.56.0)

---
updated-dependencies:
- dependency-name: transformers
  dependency-version: 4.56.0
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>

* Refresh results

Signed-off-by: Huy Do <huydhn@gmail.com>

* Another round of updates

Signed-off-by: Huy Do <huydhn@gmail.com>

* Another round of update

Signed-off-by: Huy Do <huydhn@gmail.com>

* Hopefully the last round of update

Signed-off-by: Huy Do <huydhn@gmail.com>

* Plz

Signed-off-by: Huy Do <huydhn@gmail.com>

---------

Signed-off-by: dependabot[bot] <support@github.com>
Signed-off-by: Huy Do <huydhn@gmail.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Huy Do <huydhn@gmail.com>
2025-09-19 02:50:36 -07:00
Animesh Jain
ddc56f6f92 [functional] Use the saved device on storage instead for device_custom (#162987)
Trying to reduce the number of __torch_dispatch__ calls of FakeTensorMode in the AOT metadata collection pass.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162987
Approved by: https://github.com/Lucaskabela, https://github.com/bdhirsh, https://github.com/zou3519
2025-09-18 23:43:20 +00:00
Jeff Daily
62a746f62c [ROCm] update ci_expected_accuracy for dynamo benchmarks (#163256)
Some tests that were already failing changed status to skipped.  Some model entries were missing.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163256
Approved by: https://github.com/malfet

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-09-18 19:05:19 +00:00
Jeff Daily
c7fa16a05c [ROCm][CI] update _rocm-test.yml based on _linux-test.yml (#163014)
Fixes missing huggingface secrets and aligns _rocm-test.yml with other updates from _linux-test.yml that it was initially based on.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163014
Approved by: https://github.com/huydhn
2025-09-16 02:14:38 +00:00
Jeff Daily
b334a5a379 [ROCm][benchmark] Add HF LLM benchmark expected accuracy (#162965)
PR #156967 added HF LLM benchmarks but did not add the ci expected accuracy files for ROCm.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162965
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-09-15 18:04:39 +00:00
angelayi
972140b7e9 [benchmark] Add HF LLM benchmarks (#156967)
Results in https://docs.google.com/spreadsheets/d/1xXOPg9JjEmPx0zc5QBNdyXQq8-K2_r4ybHaiS-q7pZ0/edit?gid=88695043#gid=88695043

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156967
Approved by: https://github.com/huydhn

Co-authored-by: Huy Do <huydhn@gmail.com>
2025-09-14 07:41:06 +00:00
David Berard
cad052423b [triton] Update 3.5 pin to 5ae38bdb0dc066c5823e34dc9797afb9de42c866 (#162821)
Include @aakhundov's sam_fast patch, plus NVIDIA's sm88/sm110 patches (thanks @nWEIdia)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162821
Approved by: https://github.com/atalman
2025-09-12 18:34:22 +00:00
atalman
e8eeb06034 Move inductor jobs 3.9->3.10 (#162323)
Related to: https://github.com/pytorch/pytorch/issues/161167

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162323
Approved by: https://github.com/huydhn, https://github.com/Skylion007

Co-authored-by: Huy Do <huydhn@gmail.com>
2025-09-12 03:43:06 +00:00
PyTorch MergeBot
23170dfebc Revert "Move inductor jobs 3.9->3.10 (#162323)"
This reverts commit 0663bdb123.

Reverted https://github.com/pytorch/pytorch/pull/162323 on behalf of https://github.com/huydhn due to Not sure what had happened, but some inductor unit tests start failing after this lands ([comment](https://github.com/pytorch/pytorch/pull/162323#issuecomment-3278125192))
2025-09-11 05:57:13 +00:00
atalman
0663bdb123 Move inductor jobs 3.9->3.10 (#162323)
Related to: https://github.com/pytorch/pytorch/issues/161167

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162323
Approved by: https://github.com/huydhn, https://github.com/Skylion007
2025-09-10 20:58:41 +00:00
PyTorch MergeBot
e1f0a69943 Revert "test fixing benchmarks (#162503)"
This reverts commit 484c4093a8.

Reverted https://github.com/pytorch/pytorch/pull/162503 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it regresses CPU perf smoke test ([comment](https://github.com/pytorch/pytorch/pull/162503#issuecomment-3273554680))
2025-09-10 06:55:35 +00:00
angelayi
484c4093a8 test fixing benchmarks (#162503)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162503
Approved by: https://github.com/huydhn
ghstack dependencies: #160741
2025-09-10 03:15:49 +00:00
David Berard
3f5993316e [upstream triton] update triton pin to triton 3.5 (#162278)
Update PyTorch to the latest Triton release candidate branch (release/3.5.x in triton-lang/triton)

Notably:
* this does *not* include the version number bump from 3.4 -> 3.5 (we'll do that in a follow-up PR)
* sam_fast is still failing, so we've disabled it temporarily https://github.com/pytorch/pytorch/issues/162282 and we are committed to fixing it, ideally before the branch cut but possibly as a cherry-pick into the release branch.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162278
Approved by: https://github.com/atalman
ghstack dependencies: #162244, #162309
2025-09-08 14:29:24 +00:00
Animesh Jain
e9481b6617 [dynamo] Prevent unnecessary recompile on disabled functions in the compiled frame (#161883)
Trying out a re-impl of https://github.com/pytorch/pytorch/pull/160934

The above PR led to OOM, most likely because of the cache holding to a nested function (which if not held in the cache would have been garbage collected), which holds on to cuda tensors in its closure.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161883
Approved by: https://github.com/jansel
2025-09-02 01:13:48 +00:00
PyTorch MergeBot
9b67d8e344 Revert "[RELAND] Close some sources of fake tensor leakage (#161589)"
This reverts commit 5790b00975.

Reverted https://github.com/pytorch/pytorch/pull/161589 on behalf of https://github.com/atalman due to [GH job link](https://github.com/pytorch/pytorch/actions/runs/17305150611/job/49128381649) [HUD commit link](5790b00975) ([comment](https://github.com/pytorch/pytorch/pull/161589#issuecomment-3235224249))
2025-08-28 23:19:36 +00:00