Summary:
This would be the case when package is build for local development rather than for installation
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47390
Reviewed By: janeyx99
Differential Revision: D24738416
Pulled By: malfet
fbshipit-source-id: 22bd676bc46e5d50a09539c969ce56d37cfe5952
Summary:
As typing.NoReturn is used in the codebase
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47314
Reviewed By: seemethere
Differential Revision: D24712847
Pulled By: malfet
fbshipit-source-id: f0692d408316d630bc11f1ee881b695437fb47d4
Summary:
libiomp runtime is the only external dependency OS X package has if compiled with MKL
Copy it to the stage directory from one of the available rpathes
And remove all absolute rpathes, since project shoudl have none
Fixes https://github.com/pytorch/pytorch/issues/38607
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47262
Reviewed By: walterddr
Differential Revision: D24705094
Pulled By: malfet
fbshipit-source-id: 9f588a3ec3c6c836c8986d858fb53df815a506c8
Summary:
Also, be a bit future-proof in support version list
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46921
Reviewed By: seemethere
Differential Revision: D24568733
Pulled By: malfet
fbshipit-source-id: ae34f8da1ed39b80dc34db0b06e4ef142104a3ff
Summary:
import print_function to make setup.py invoked by Python2 print human readable error:
```
% python2 setup.py
Python 2 has reached end-of-life and is no longer supported by PyTorch.
```
Also, remove `future` from the list of the PyTorch package install dependencies
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46317
Reviewed By: walterddr, bugra
Differential Revision: D24305004
Pulled By: malfet
fbshipit-source-id: 9181186170562384dd2c0e6a8ff0b1e93508f221
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45844
Someone pointed out that dataclasses were actually added to the python
stdlib in 3.7 and not 3.8, so bumping down the dependency on dataclasses
from 3.8 -> 3.7 makes sense here
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
Test Plan: Imported from OSS
Reviewed By: walterddr, malfet
Differential Revision: D24113367
Pulled By: seemethere
fbshipit-source-id: 03d2d93f7d966d48a30a8e2545fd07dfe63b4fb3
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45610
Also add to the usual documentation places that this option exists.
Test Plan: Imported from OSS
Reviewed By: gmagogsfm
Differential Revision: D24058199
Pulled By: suo
fbshipit-source-id: 81574fbd042f47587e2c7820c726fac0f68af2a7
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45611
dataclasses was made a standard library item in 3.8
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
Test Plan: Imported from OSS
Reviewed By: walterddr
Differential Revision: D24031740
Pulled By: seemethere
fbshipit-source-id: 15bdf1fe0d8de9b8ba7912e4a651f06b18d516ee
Summary:
There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports:
```2to3 -f future -w caffe2```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033
Reviewed By: seemethere
Differential Revision: D23808648
Pulled By: bugra
fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
Summary:
The ATen/native/cuda headers were copied to torch/include, but then not included in the final package. Further, add ATen/native/hip headers to the installation, as well.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45097
Reviewed By: mruberry
Differential Revision: D23831006
Pulled By: malfet
fbshipit-source-id: ab527928185faaa912fd8cab208733a9b11a097b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44577
I would like to to move this to cmake so that I can depend on it
happening from other parts of the build.
This PR pulls out the logic for determining the version string and
writing the version file into its own module. `setup.py` still receives
the version string and uses it as before, but now the code for writing
out `torch/version.py` lives in a custom command in torch/CMakeLists.txt
I noticed a small inconsistency in how version info is populated.
`TORCH_BUILD_VERSION` is populated from `setup.py` at configuration
time, while `torch/version.py` is written at build time. So if, e.g. you
configured cmake on a certain git rev, then built it in on another, the
two versions would be inconsistent.
This does not appear to matter, so I opted to preserve the existing
behavior.
Test Plan: Imported from OSS
Reviewed By: bertmaher
Differential Revision: D23734781
Pulled By: suo
fbshipit-source-id: 4002c9ec8058503dc0550f8eece2256bc98c03a4
Summary:
This can be taken from the system in which case it is not used from the submodule. Hence the check here limits the usage unnecessarily
ccing malfet
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44278
Reviewed By: malfet
Differential Revision: D23568552
Pulled By: ezyang
fbshipit-source-id: 7fd2613251567f649b12eca0b1fe7663db9cb58d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42629
How to approach reviewing this diff:
- The new codegen itself lives in `tools/codegen`. Start with `gen.py`, then read `model.py` and them the `api/` folder. The comments at the top of the files describe what is going on. The CLI interface of the new codegen is similar to the old one, but (1) it is no longer necessary to explicitly specify cwrap inputs (and now we will error if you do so) and (2) the default settings for source and install dir are much better; to the extent that if you run the codegen from the root source directory as just `python -m tools.codegen.gen`, something reasonable will happen.
- The old codegen is (nearly) entirely deleted; every Python file in `aten/src/ATen` was deleted except for `common_with_cwrap.py`, which now permanently finds its home in `tools/shared/cwrap_common.py` (previously cmake copied the file there), and `code_template.py`, which now lives in `tools/codegen/code_template.py`. We remove the copying logic for `common_with_cwrap.py`.
- All of the inputs to the old codegen are deleted.
- Build rules now have to be adjusted to not refer to files that no longer exist, and to abide by the (slightly modified) CLI.
- LegacyTHFunctions files have been generated and checked in. We expect these to be deleted as these final functions get ported to ATen. The deletion process is straightforward; just delete the functions of the ones you are porting. There are 39 more functions left to port.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: bhosmer
Differential Revision: D23183978
Pulled By: ezyang
fbshipit-source-id: 6073ba432ad182c7284a97147b05f0574a02f763
Summary:
This prevents confusing errors when the interpreter encounters some
syntax errors in the middle.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42870
Reviewed By: albanD
Differential Revision: D23269265
Pulled By: ezyang
fbshipit-source-id: 61f62cbe294078ad4a909fa87aa93abd08c26344
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42522
Main changes:
- Consolidated CMake files to have a single entry point, rather than having a specialized one for PyTorch.
- Changed the way the preprocessor flags are provided, and changed their name.
There were a few instances in PyTorch's CMake files where we were directly adding TensorPipe's source directory as an include path, which however doesn't contain the auto-generated header we now added. We fix that by adding the `tensorpipe` CMake target as a dependency, so that the include paths defined by TensorPipe are used, which contain that auto-generated header. So instead we link those targets to the tensorpipe target in order for them to pick up the correct include directories.
I'm turning off SHM and CMA for now because they have never been covered by the CI. I'll enable them in a separate PR so that if they turn out to be flaky we can revert that change without reverting this one.
Test Plan: CI
Reviewed By: malfet
Differential Revision: D22959472
fbshipit-source-id: 1959a41c4a66ef78bf0f3bd5e3964969a2a1bf67
Summary:
Import __future__ to make `print(*args)` a syntactically correct statement under Python-2
Otherwise, if once accidentally invokes setup.py using Python-2 interpreter they will be greeted by:
```
File "setup.py", line 229
print(*args)
^
SyntaxError: invalid syntax
```
instead of:
```
Python 2 has reached end-of-life and is no longer supported by PyTorch.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41960
Reviewed By: orionr, seemethere
Differential Revision: D22710174
Pulled By: malfet
fbshipit-source-id: ffde3ddd585707ba1d39e57e0c6bc9c4c53f8004
Summary:
Switch off `/Z7` so that we don't generate debug info in Release and MinSizeRel builds, so that we will probably get smaller static libraries and object files and faster build time
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39703
Differential Revision: D21960684
Pulled By: ezyang
fbshipit-source-id: 909a237a138183591d667885b13fc311470eed65
Summary:
It just depends on a single `torch_python` library.
C library does not depend on standard C++ library and as result it closes https://github.com/pytorch/pytorch/issues/36941
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39375
Reviewed By: orionr
Differential Revision: D21840645
Pulled By: malfet
fbshipit-source-id: 777c189feee9d6fc686816d92cb9f109b8aac7ca
Summary:
**Summary**
This commit adds the headers required to define and use JIT backends to
`package_data` in `setup.py` so that they are exported and copied to the
same place as the rest of the headers when PyTorch is installed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38525
Differential Revision: D21601806
Pulled By: SplitInfinity
fbshipit-source-id: 1615dd4047777926e013d7dd14fe427d5ffb8b70
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35617
Python 2 has reached end-of-life and is no longer supported by PyTorch.
Now we can clean up some cruft that we put in place to support it.
Test Plan: CI
Differential Revision: D20842883
Pulled By: dreiss
fbshipit-source-id: 18dc5219ba99658c0ca7e2f26863df008c420e6a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38157
This removes the error prone process of assembling `torch/__init__.pyi`
(and frequently forgetting to expose things), since now we can simply
rely on the true source file to get things done. Most of the old
codegen in gen_pyi.py is now rerouted to various files:
- `torch/_C/__init__.pyi` (the dumping pile of all misc bindings)
- `torch/_C/_nn.pyi` (NN function bindings)
- `torch/_C/_VariableFunctions.pyi` (torch function bindings)
`torch.types` grew a bunch more definitions that previously where
defined in `torch/__init__.pyi`
Some miscellaneous changes
- Fixed a bug where we treat single TensorList argument as implying
varargs are accepted. This is actually only supported on IntList.
This means we can correctly generate a stub for dequantize.
- Add missing manual stub for nonzero
- Switched torch/onnx/operators.py to directly refer to _C module,
since apparently mypy doesn't think that methods prefixed with
underscores get reexported. This may be a recurring theme; maybe
we need to find a better way to solve it.
Because I was really lazy, I dumped namedtuple definitions in both
`torch._C` and `torch._C._VariableFunctions`. This is definitely wrong.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D21497400
Pulled By: ezyang
fbshipit-source-id: 07b126141c82efaca37be27c07255cb2b9b3f064
Summary:
We should not rely on the async exceptions. Catching C++ only exception is more sensible and may get a boost in both space (1163 MB -> 1073 MB, 0.92x) and performance(51m -> 49m, 0.96x).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37235
Differential Revision: D21256918
Pulled By: ezyang
fbshipit-source-id: 572ee96f2e4c48ad13f83409e4e113483b3a457a
Summary:
These options are disabled by default, and are supposed to be used by
linux distro developers. With the existing shortcut option
USE_SYSTEM_LIBS toggled, these new options will be enabled as well.
Additionally, when USE_SYSTEM_LIBS is toggled, setup.py should
no longer check the existence of git submodules.
ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37277
Differential Revision: D21256999
Pulled By: ezyang
fbshipit-source-id: 84f97d008db5a5e41a289cb7bce94906de3c52cf
Summary:
Line 33+ contains instructions on how to disable use, 108+ on how to enable it.
The default in CMakeLists.txt is enabled, so drop the latter.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36993
Differential Revision: D21161793
Pulled By: ngimel
fbshipit-source-id: 08c5eecaf8768491f90d4a52c338ecea32a0c35e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35613
Python 2 has reached end-of-life and is no longer supported by PyTorch.
To spare users from a long, doomed setup when trying to use PyTorch with
Python 2, detect this case early and fail with a clear message. This
commit covers setup.py.
Test Plan: Attempted to build PyTorch with Python 2 and saw a clear error *quickly*.
Differential Revision: D20842881
Pulled By: dreiss
fbshipit-source-id: caaaa0dbff83145ff668bd25df6d7d4b3ce12e47
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35411
The file and class names in ATen/core/boxing were quite confusing.
Let's rename them for readability.
Also move function schema inference out of the boxing logic into op_registration.h where it belongs.
ghstack-source-id: 101539206
Test Plan: waitforsandcastle
Differential Revision: D20653621
fbshipit-source-id: 6a79c73d5758bee1e072d543c030913b18a69c7c
Summary:
The original behavior of pytorch c10d only supports built-in c10d backends, such as
nccl/gloo/mpi. This patch is used to extend the c10d capability to support dynamically
loading 3rd party communication libraries which are derived from ProcessGroup base class.
related RFC is in: https://github.com/pytorch/pytorch/issues/27955
Through this way, user just need specify a 3rd party c10d backend name when invoking
torch.distributed.init_process_group(). The proposed logic will try to load corresponding
c10d backend cpp extension automatically. as for how to develop a new 3rd party c10d backend
through cpp extension, pls refer to test/cpp_extensions/cpp_c10d_extension.cpp
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28068
Differential Revision: D19174838
Pulled By: agolynski
fbshipit-source-id: 3409a504a43ce7260e6f9d1207c00e87471fac62
Summary:
As a followup to https://github.com/pytorch/pytorch/pull/35042 this removes python2 from setup.py and adds Python 3.8 to the list of supported versions. We're already testing this in CircleCI.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35539
Differential Revision: D20709060
Pulled By: orionr
fbshipit-source-id: 5d40bc14cb885374fec370fc7c5d3cde8769039a
Summary:
## Motivation
This PR upgrades MKL-DNN from v0.20 to DNNL v1.2 and resolves https://github.com/pytorch/pytorch/issues/30300.
DNNL (Deep Neural Network Library) is the new brand of MKL-DNN, which improves performance, quality, and usability over the old version.
This PR focuses on the migration of all existing functionalities, including minor fixes, performance improvement and code clean up. It serves as the cornerstone of our future efforts to accommodate new features like OpenCL support, BF16 training, INT8 inference, etc. and to let the Pytorch community derive more benefits from the Intel Architecture.
<br>
## What's included?
Even DNNL has many breaking changes to the API, we managed to absorb most of them in ideep. This PR contains minimalist changes to the integration code in pytorch. Below is a summary of the changes:
<br>
**General:**
1. Replace op-level allocator with global-registered allocator
```
// before
ideep::sum::compute<AllocForMKLDNN>(scales, {x, y}, z);
// after
ideep::sum::compute(scales, {x, y}, z);
```
The allocator is now being registeted at `aten/src/ATen/native/mkldnn/IDeepRegistration.cpp`. Thereafter all tensors derived from the `cpu_engine` (by default) will use the c10 allocator.
```
RegisterEngineAllocator cpu_alloc(
ideep::engine::cpu_engine(),
[](size_t size) {
return c10::GetAllocator(c10::DeviceType::CPU)->raw_allocate(size);
},
[](void* p) {
c10::GetAllocator(c10::DeviceType::CPU)->raw_deallocate(p);
}
);
```
------
2. Simplify group convolution
We had such a scenario in convolution where ideep tensor shape mismatched aten tensor: when `groups > 1`, DNNL expects weights tensors to be 5-d with an extra group dimension, e.g. `goihw` instead of `oihw` in 2d conv case.
As shown below, a lot of extra checks came with this difference in shape before. Now we've completely hidden this difference in ideep and all tensors are going to align with pytorch's definition. So we could safely remove these checks from both aten and c2 integration code.
```
// aten/src/ATen/native/mkldnn/Conv.cpp
if (w.ndims() == x.ndims() + 1) {
AT_ASSERTM(
groups > 1,
"Only group _mkldnn_conv2d weights could have been reordered to 5d");
kernel_size[0] = w.get_dim(0) * w.get_dim(1);
std::copy_n(
w.get_dims().cbegin() + 2, x.ndims() - 1, kernel_size.begin() + 1);
} else {
std::copy_n(w.get_dims().cbegin(), x.ndims(), kernel_size.begin());
}
```
------
3. Enable DNNL built-in cache
Previously, we stored DNNL jitted kernels along with intermediate buffers inside ideep using an LRU cache. Now we are switching to the newly added DNNL built-in cache, and **no longer** caching buffers in order to reduce memory footprint.
This change will be mainly reflected in lower memory usage from memory profiling results. On the code side, we removed couple of lines of `op_key_` that depended on the ideep cache before.
------
4. Use 64-bit integer to denote dimensions
We changed the type of `ideep::dims` from `vector<int32_t>` to `vector<int64_t>`. This renders ideep dims no longer compatible with 32-bit dims used by caffe2. So we use something like `{stride_.begin(), stride_.end()}` to cast parameter `stride_` into a int64 vector.
<br>
**Misc changes in each commit:**
**Commit:** change build options
Some build options were slightly changed, mainly to avoid name collisions with other projects that include DNNL as a subproject. In addition, DNNL built-in cache is enabled by option `DNNL_ENABLE_PRIMITIVE_CACHE`.
Old | New
-- | --
WITH_EXAMPLE | MKLDNN_BUILD_EXAMPLES
WITH_TEST | MKLDNN_BUILD_TESTS
MKLDNN_THREADING | MKLDNN_CPU_RUNTIME
MKLDNN_USE_MKL | N/A (not use MKL anymore)
------
**Commit:** aten reintegration
- aten/src/ATen/native/mkldnn/BinaryOps.cpp
Implement binary ops using new operation `binary` provided by DNNL
- aten/src/ATen/native/mkldnn/Conv.cpp
Clean up group convolution checks
Simplify conv backward integration
- aten/src/ATen/native/mkldnn/MKLDNNConversions.cpp
Simplify prepacking convolution weights
- test/test_mkldnn.py
Fixed an issue in conv2d unit test: it didn't check conv results between mkldnn and aten implementation before. Instead, it compared the mkldnn with mkldnn as the default cpu path will also go into mkldnn. Now we use `torch.backends.mkldnn.flags` to fix this issue
- torch/utils/mkldnn.py
Prepack weight tensor on module `__init__` to achieve better performance significantly
------
**Commit:** caffe2 reintegration
- caffe2/ideep/ideep_utils.h
Clean up unused type definitions
- caffe2/ideep/operators/adam_op.cc & caffe2/ideep/operators/momentum_sgd_op.cc
Unify tensor initialization with `ideep::tensor::init`. Obsolete `ideep::tensor::reinit`
- caffe2/ideep/operators/conv_op.cc & caffe2/ideep/operators/quantization/int8_conv_op.cc
Clean up group convolution checks
Revamp convolution API
- caffe2/ideep/operators/conv_transpose_op.cc
Clean up group convolution checks
Clean up deconv workaround code
------
**Commit:** custom allocator
- Register c10 allocator as mentioned above
<br><br>
## Performance
We tested inference on some common models based on user scenarios, and most performance numbers are either better than or on par with DNNL 0.20.
ratio: new / old | Latency (batch=1 4T) | Throughput (batch=64 56T)
-- | -- | --
pytorch resnet18 | 121.4% | 99.7%
pytorch resnet50 | 123.1% | 106.9%
pytorch resnext101_32x8d | 116.3% | 100.1%
pytorch resnext50_32x4d | 141.9% | 104.4%
pytorch mobilenet_v2 | 163.0% | 105.8%
caffe2 alexnet | 303.0% | 99.2%
caffe2 googlenet-v3 | 101.1% | 99.2%
caffe2 inception-v1 | 102.2% | 101.7%
caffe2 mobilenet-v1 | 356.1% | 253.7%
caffe2 resnet101 | 100.4% | 99.8%
caffe2 resnet152 | 99.8% | 99.8%
caffe2 shufflenet | 141.1% | 69.0% †
caffe2 squeezenet | 98.5% | 99.2%
caffe2 vgg16 | 136.8% | 100.6%
caffe2 googlenet-v3 int8 | 100.0% | 100.7%
caffe2 mobilenet-v1 int8 | 779.2% | 943.0%
caffe2 resnet50 int8 | 99.5% | 95.5%
_Configuration:
Platform: Skylake 8180
Latency Test: 4 threads, warmup 30, iteration 500, batch size 1
Throughput Test: 56 threads, warmup 30, iteration 200, batch size 64_
† Shufflenet is one of the few models that require temp buffers during inference. The performance degradation is an expected issue since we no longer cache any buffer in the ideep. As for the solution, we suggest users opt for caching allocator like **jemalloc** as a drop-in replacement for system allocator in such heavy workloads.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32422
Test Plan:
Perf results: https://our.intern.facebook.com/intern/fblearner/details/177790608?tab=Experiment%20Results
10% improvement for ResNext with avx512, neutral on avx2
More results: https://fb.quip.com/ob10AL0bCDXW#NNNACAUoHJP
Reviewed By: yinghai
Differential Revision: D20381325
Pulled By: dzhulgakov
fbshipit-source-id: 803b906fd89ed8b723c5fcab55039efe3e4bcb77
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34774
This PR provides pybind11's `type_caster<at::Generator>` that allows mapping `at::Generator` instance returned from user-defined method to python `torch::Generator`, defined as `THPGenerator ` c++ class.
This allows 1) defining custom RNG in c++ extension 2) using custom RNG in python code.
`TestRNGExtension.test_rng` shows how to use custom RNG defined in `rng_extension.cpp`
Test Plan: Imported from OSS
Differential Revision: D20549451
Pulled By: pbelevich
fbshipit-source-id: 312a6deccf8228f7f60695bbf95834620d52f5eb
Summary:
Because `past` is used in `caffe2.python.core`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35057
Test Plan: CI
Differential Revision: D20547042
Pulled By: malfet
fbshipit-source-id: cad2123c7b88271fea37f21e616df551075383a8
Summary:
Was originally not a requirement but we should add it back here since
it's required on import and we require it anyways for our conda
packages.
Tested with:
```
❯ pkginfo -f requires_dist *.whl
requires_dist: ['numpy']
```
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34510
Differential Revision: D20352125
Pulled By: seemethere
fbshipit-source-id: 383e396fe500ed7043d83c3df57d1772d0fff1e6
Summary:
Per https://github.com/pytorch/pytorch/issues/19161 PyTorch is incompatible with 3.6.0 due to the missing `PySlice_Unpack`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34724
Test Plan: CI + try to load pytorch binary using python-3.6.0
Differential Revision: D20449052
Pulled By: malfet
fbshipit-source-id: 2c787fc64f5d1377c7f935ad2f3c77f46723d7dd
Summary:
Attempt to build pytorch with ASAN on system with gcc-8 fails due to the mismatch system compilation flags.
Address the issue by using original compiler to build `torch._C` extension
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34549
Test Plan: Run `.jenkins/pytorch/build-asan.sh` on FC-30
Differential Revision: D20373781
Pulled By: malfet
fbshipit-source-id: 041c8d25f96b4436385a5e0eb6fc46e9b5fdf3f1
Summary:
This PR move glu to Aten(CPU).
Test script:
```
import torch
import torch.nn.functional as F
import time
torch.manual_seed(0)
def _time():
if torch.cuda.is_available():
torch.cuda.synchronize()
return time.time()
device = "cpu"
#warm up
for n in [10, 100, 1000, 10000]:
input = torch.randn(128, n, requires_grad=True, device=device)
grad_output = torch.ones(128, n // 2, device=device)
for i in range(1000):
output = F.glu(input)
output.backward(grad_output)
for n in [10, 100, 1000, 10000]:
fwd_t = 0
bwd_t = 0
input = torch.randn(128, n, requires_grad=True, device=device)
grad_output = torch.ones(128, n // 2, device=device)
for i in range(10000):
t1 = _time()
output = F.glu(input)
t2 = _time()
output.backward(grad_output)
t3 = _time()
fwd_t = fwd_t + (t2 -t1)
bwd_t = bwd_t + (t3 - t2)
fwd_avg = fwd_t / 10000 * 1000
bwd_avg = bwd_t / 10000 * 1000
print("input size(128, %d) forward time is %.2f (ms); backwad avg time is %.2f (ms)."
% (n, fwd_avg, bwd_avg))
```
Test device: **skx-8180.**
Before:
```
input size(128, 10) forward time is 0.04 (ms); backwad avg time is 0.08 (ms).
input size(128, 100) forward time is 0.06 (ms); backwad avg time is 0.14 (ms).
input size(128, 1000) forward time is 0.11 (ms); backwad avg time is 0.31 (ms).
input size(128, 10000) forward time is 1.52 (ms); backwad avg time is 2.04 (ms).
```
After:
```
input size(128, 10) forward time is 0.02 (ms); backwad avg time is 0.05 (ms).
input size(128, 100) forward time is 0.04 (ms); backwad avg time is 0.09 (ms).
input size(128, 1000) forward time is 0.07 (ms); backwad avg time is 0.17 (ms).
input size(128, 10000) forward time is 0.13 (ms); backwad avg time is 1.03 (ms).
```
Fix https://github.com/pytorch/pytorch/issues/24707, https://github.com/pytorch/pytorch/issues/24708.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33179
Differential Revision: D19839835
Pulled By: VitalyFedyunin
fbshipit-source-id: e4d3438556a1068da2c4a7e573d6bbf8d2a6e2b9