Commit Graph

30 Commits

Author SHA1 Message Date
Bugra Akyildiz
27c7158166 Remove __future__ imports for legacy Python2 supports (#45033)
Summary:
There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports:

```2to3 -f future -w caffe2```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033

Reviewed By: seemethere

Differential Revision: D23808648

Pulled By: bugra

fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
2020-09-23 17:57:02 -07:00
Kittipat Virochsiri
0aa7407dd0 Rearrange stopping condition in CompositeReader (#20062)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20062

Previously, the batch counter is incremented even if none of the readers has data. In this diff,
1) Limiter is applied to the last reader so that the batch counter is not incremented unless the first N-1 readers have data
2) The stop blob of the last reader as the stop blob of the task so that it's checked before the counter is incremented

Reviewed By: xianjiec

Differential Revision: D15099761

fbshipit-source-id: 47ed6c728118fe453cf57ac3457085867939485b
2019-05-06 15:06:32 -07:00
Kittipat Virochsiri
c37fac4d50 Fixing stop condition on composite reader (#9888)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9888

Limiter cannot be shared or copied; just pass it to the first reader.

Reviewed By: xianjiec

Differential Revision: D9008871

fbshipit-source-id: e20cd785b26b1844e156efc3833ca77cfc3ffe82
2018-08-20 03:02:20 -07:00
Orion Reblitz-Richardson
edb88b5f3a
Update from Facebook (#8887)
* add opencl + fpga context

adds an opencl context inside caffe2/fb which can be used for fpga access

* [Caffe2] Force tensor inference checks to be triggered during testing

We've started to rely on TensorInference functions more for different analysis.  This diff ensures that the TensorInference function's result matches what is expected from the definition of the operator.

* Enable building //caffe2:torch with @mode/opt

In @mode/opt, python runs out of a PAR, which breaks a lot of
assumptions in the code about where templates/ folders live relative
to __file__. Rather than introduce hacks with parutil, I simply turn
template_path into a parameter for all the relevant functions and
thread it through from the top level.

* [Caffe2] Fix cost models for DotProduct and Div.  Update Tensor Inference for dot product

As title.  DotProduct states that output is a 1-D tensor (https://caffe2.ai/docs/operators-catalogue.html#dotproduct) though code suggests it is either 0- or 1-D depending on inputs.  TensorInference defined to support implementation.

* [SG-MoE] Add an option to make the experts NOT as components

* [nomnigraph] Rename and fixup convertToNeuralNetOperator API

This will make things a bit cleaner

* no longer symlink THNN.h and THCUNN.h

* forced decoder network (onnx export)

Closes https://github.com/pytorch/translate/pull/95

Add networks in ensemble_export.py to create a forced decoding network from PyTorch NMT checkpoints. This network takes an arbitrary numberized (source, target) pair and returns the model score for the translation, including penalties.

Vocabulary reduction networks are also supported, but note that target indices which are not in the possible_translation_tokens generated for the source input will be trea

* Revert schema change to fix production models

Revert schema change to fix production models

* MockLogDeviceReader - rebase on FIX

# Goal

1), Build a make_mock_log_device_reader using make_mock_reader

2), Replace the real log_device_reader here: https://fburl.com/raihwf1p

# Log by D8151734

Real log_device_reader:
```
I0529 20:29:05.373108 954994 tensor.h:839] Tensor print_net/log of type std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >. Dims: (): read_net/ParseOpenTrainingRow:0
I0529 20:29:05.373244 954994 tensor.h:839] Tensor read_net/ParseOpenTrainin

* [C2/D2][1/n]: Nonnegative-Constrained Optimization -- log barrier

implement log barrier as a regularization method

* Add teacher weight screening.

Add teacher weight sceening according to teacher labels. If teacher label is zero, we do not use the distill loss in the objective function.

* Add NormalizerContext

See task for more detail. This implementation is a copy of what exists for RegularizerContext except for how the parameters are defined in the model_definition thrift file.

I'll try an alternative implementation which overrides the default arguments of functions instead like for argscopes in tensorflow.

https://github.com/pytorch/pytorch/compare/master...MaximeBoucher:update-from-facebook-0939578c068c?expand=1

* Adding cosine similarity option in dot processor

Add pairwise cosine similarity option in dot product.
Add an option to concate dot product and cosine similarity.
Add test cases.

* [nomnigraph][redo] Concat elim for sparseNN

Same as D7962948, which was reverted because Operator Schema was not
defined

* [pytorch] Revert pytorch/pytorch#7918 'Release GIL when copying to shared memory', breaks ASAN

Revert this pytorch diff that breaks ASAN when running Filament in dev mode; in opt mode it gives "bad file descriptor" errors. Looks like a race when copying tensors to shared memory in multiple mp.Queue's (which spawn separate threads).

https://github.com/pytorch/pytorch/pull/7918/files

* [nomnigraph][mobile] Enable nomnigraph by default, use -Oz on nomnigraph related code to reduce code size

enables nomnigraph and reduces codesize

* [Warmup] Allow both offline incremental training and online training

Change plan name on saving side and reading side to support both training type

This diff depends on D8128530 and D8168651.

* Revert D7802642: [Warmup] Allow both offline incremental training and online training

This reverts commit afc213cf9b36cecf75333a788391c4d09f4afccc

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* Add legacy grad logic to fix div op on old graphs.

Add legacy grad logic to fix div op on old graphs.

* Correctly propagate operator failures

Propagate errors from operators that throw exceptions and return false

* Revert D8374829: [caffe2][nomnigraph][redo] Concat elim for sparseNN

This reverts commit 6dda028c463e54bb5c32188bbbe9202107e188a5

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* [Caffe2] Added extra_info to core.DeviceOption(), enforced extra_info to be inherited in scope.DeviceScope

extra_info is a newly defined field in DeviceOption proto. This diff added extra_info to the core.DeviceOption().  And, In scope.DeviceScope(), this diff enforce the new scope to inherit the extra_info from old scope.

* [opt] hgdirsync wasn't enabled, merge diverged code

Here's the damage, P59732616 basically xplat was left behind but had
the change from assert to CAFFE_ENFORCE

* OMP parallelism over RoIs for RoIAlign op

Simpler to parallelize over RoIs. Shouldn't affect other uses as it relies on
the number of OMP threads set during startup.

PR: https://github.com/pytorch/pytorch/pull/8562

* Use int64_t for shape in FillOps

to avoid overflow of int32

* Implement Rotated RoIAlign op

Based on Rotated RPNs as explained in https://arxiv.org/abs/1703.01086.
The idea is simple - orientation/angle is added as an RPN
anchor parameter and then the angle is further regressed similar to bbox
coords. There are some additional changes related to NMS and IoU, but besides
that it's a direct extension to Faster-RCNN. Further details in https://fb.quip.com/sZHlA1iMfWPZ.

RoIs are represented in [center_x, center_y, width, height, angle] format.
`angle` repre

* Rotated RoIAlign op CUDA forward implementation

CUDA forward impl for D8415490

* RoIAlignRotated op CUDA backward pass implementation

TSIA

* All remaining fixes to eliminate process_github.sh

Most of this diff has already been reviewed separately, except for the parts relating to _thnn/utils.py and _utils._internal.py

remove skipIf(True, 'Fbcode') line from process_github.sh

replace sed of cpp file with #ifdef to control cudnnDestroy use

undo sync-time deletion of .gitattributes, remove process_github.sh

switch to using _utils._internal rather than try-import-except

This diff also fixes the open-source bug where rebuilds have

* Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training"

Original commit changeset: 7707d2efe60e The original diff is backout becuase the online trainer package is backed out. This code would only work with new online trainer package

* [easy] improve error log in adagrad op

as title

* re-allow use of thnn_h_path

This fixes cffi usage in OSS

* [4/4] [tum] paralyzing layerNorm for GPU full sync

as title

* add compile=False to pytorch tests, remove hack with pyc

* Add shape and type inference for RowWiseArgMax operator

See title

* Revert D8515341: Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training"

This reverts commit 78167eeef0af16b60f72c82f9dcdda9b41b4dcbd

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* [fix-flaky-test] mock_hive_reader_test flaky, because GlobalCounter collects local counts intervally

# Problem

`MockHiveReader` uses `GlobalCounter` to limit `max_examples`.

GlobalCounter on server node collect local counts from worker nodes every 1 sec.

This 1 sec delay makes it impossible to limit exactly to the `max_examples`, it will definitely exceed `max_examples`.

# Plan

Given,
```
Expected num_examples = max_examples + num_examples/sec (Read Speed) x 1 sec (GlobalCounter Sync Int

* [Caffe2] Fix FCGradient cost inference.  Prevent overflow in cost inference

FCGradient missed a factor 2 in the `num_outputs == 3` case.  Overflow was occurring with flop calculation for FC.  Changed types to `uint64_t` to prevent future problems.

* Fix binary ops with empty inputs

Fix binary ops with empty inputs

* Support the filling of input blob with provided data

as title for Biz Integrity case

* Back out "Revert D8515341: Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training""

Original commit changeset: 30c55dd38816 Original diff is reverted due to introducing bad integration test. Fixed the integration test.

* [c2][easy] improve pack ops error loggings

as desc.

* Add ShapeTypeInference for LpNorm operator

As desc

* Shard test_nn to reduce runtime for each test target

Closes https://github.com/pytorch/pytorch/pull/8793

The current test_nn would time out and be disabled in GreenWarden, and we need to have an option to split it up in order to pass the stress test. Right now GreenWarden roughly allows running 100 test cases in test_nn before timing out, and here we have an option to divide test_nn into 30 shards (with ~40 tests in each shard) to allow for some test suite growth in the future.

* Change default caffe2_streams_per_gpu to 1

* Remove IN_SANDCASTLE from common.py and test_nn.py

We prefer to disable the failing tests through Sandcastle UI instead.

* Add a new class for an updated prof_dag.proto

This diff contains:
- An updated prof_dag.proto that contains blob profiles.
- A class to deserialize this information (serialization is in a follow up diff)
- Update to separate profiling information from NeuralNet (and use it as part of the class above).
- Unit tests

* Lambdarank for SparseNN

This diff adds a lambda_rank_layer for SparseNN.
 changes include
1) Adds support for multi sessions in c2 op
2) Adds support for two different loss functions in c2 op
3) Unit tests for op

* Revert D8586950: Back out "Revert D8515341: Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training""

This reverts commit 012220ed63eccc35659a57b31d16a3625da6317b

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* [easy] A few fixups to multithread predictor benchmark

(1) support perf on T6 server
(2) remove dead code

* fix a bug about the map size

as title

* Fix reduce sum on in-place case.

Fix reduce sum on in-place case.

* [Warmup] Reland reverted diff Allow both offline incremental training and online training

Closes https://github.com/pytorch/pytorch/pull/8827

fix net transform integration test. Allow offline and online trainer to coexist D7802642.

* Add StoreHandlerNotAvailableException

Add an exception for a store that is not available or has been
deleted.

* Use exception handling for fault tolerance, missing KV store

Remove status blobs to communication ops so that exceptions propagate on
failure.

* [C2/D2][2/n]: Nonnegative-Constrained Optimization -- bounded grad proj

for simple bounded constrained optimization, incl non-negative box constraints.

* [GanH]: Adaptive Weighting with More Estimations

With implemented postivity optimization, we now learn adaptive weights with different
parameterizations.

This improves parameter estimation and training stability.

* Revert some changes for landing

* Remove AutoNoGIL in StorageSharing

* Temporarily disable net_tests

* Revert "[Caffe2] Force tensor inference checks to be triggered during testing"

This reverts commit 67ef05c22b2f71b4a489695384932f968384a2a4.

* Revert "Fix reduce sum on in-place case."

This reverts commit 6cb8a8e1b3db7b6d20941b0053e3f3836068eb64.

* Revert "Revert "Fix reduce sum on in-place case.""

This reverts commit 130a257c0893dc09f4bd6e6a45d112261807fd2c.
2018-06-26 14:55:48 -07:00
Qinqing Zheng
6547245f1f Add return value to setup() function of PipedReaderBuilder (#7476) 2018-05-10 15:39:54 -07:00
Orion Reblitz-Richardson
6223bfdb1d Update from Facebook (#6692)
* [GanH][Easy]: Add assertion to adaptive weighting layer

0 weight causes numeric instability and exploding ne

* [Easy] Add cast op before computing norm in diagnose options

As LpNorm only takes floats we add a manual casting here.

* Introduce a new caching device allocator

`cudaMalloc` and `cudaFree` calls are slow, and become slower the
more GPUs there are. Essentially, they grab a host-wide (not device-wide) lock
because GPU memory is transparently shared across all GPUs. Normally, this
isn't much of a concern since workloads allocate memory upfront, and reuse it
during later computation.

However, under some computation models (specifically, memory conserving
approaches like checkpoint-and-recompute, see
https://medium.com/@yaroslavvb/fitting-larger-networks-into-memory-583e3c758ff9)
this assumption is no longer true. In these situations, `cudaMalloc` and
`cudaFree` are common and frequent. Furthermore, in data parallel contexts,
these calls happen at nearly the same time from all GPUs worsening lock
contention.

A common solution to this problem is to add a custom allocator. In fact,
nVIDIA provides one out of the box: CUB, which Caffe2 already supports.
Unfortunately, the CUB allocator suffers from very high fragmentation. This is
primarily because it is a "buddy" allocator which neither splits nor merges
free cached blocks. Study
https://github.com/NVlabs/cub/blob/1.8.0/cub/util_allocator.cuh#L357 if you
want to convince yourself.

This diff adapts a caching allocator from the Torch codebase
https://github.com/torch/cutorch/blob/master/lib/THC/THCCachingAllocator.cpp
which does splitting and merging and ends up working really well, at least for
workloads like the checkpoint-and-recompute computation models noted above.

I simplified the implementation a little bit, made it a bit more C++-like. I
also removed a bunch of stream synchronization primitives for this diff. I
plan to add them back in subsequent diffs.

* Report reader progress in fblearner workflows

Integrate with fblearner progress reporting API and add support to report training progress from reader nodes.
If reader is constructed with batch limits, report based on finished batch vs total batch. The finished batch may be more than total batch because we evaludate if we should stop processing everytime we dequeue a split.
If no limit for the reader, report based on finished splits (Hive files) vs total splits. This is fairly accurate.

* [GanH][Diagnose]: fix plotting

1. ganh diagnose needs to set plot options
2. modifier's blob name is used for metric field can need to be fixed before
generating net

* Automatic update of fbcode/onnx to 985af3f5a0f7e7d29bc0ee6b13047e7ead9c90c8

* Make CompositeReader stops as soon as one reader finishes

Previously, CompositeReader calls all readers before stopping. It results in flaky test since the last batch may be read by different threads; resulting in dropped data.

* [dper] make sure loss is not nan

as desc.

* [rosetta2] [mobile-vision] Option to export NHWC order for RoIWarp/RoIAlign

Thanks for finding this @stzpz and @wangyanghan. Looks like NHWC is more
optimized. For OCR though it doesn't yet help since NHWC uses more mem b/w but
will soon become important.

* Intra-op parallel FC operator

Intra-op parallel FC operator

* [C2 Proto] extra info in device option

passing extra information in device option

design doc: https://fb.quip.com/yAiuAXkRXZGx

* Unregister MKL fallbacks for NCHW conversions

* Tracing for more executors

Modified Tracer to work with other executors and add more tracing

* Remove ShiftActivationDevices()

* Check for blob entry iff it is present

When processing the placeholders ops, ignore if the blob is not present in the blob_to_device.

* Internalize use of eigen tensor

Move use of eigen tensor out of the header file so we don't get template partial specialization errors when building other libraries.

* feature importance for transformed features.

* - Fix unused parameter warnings

The changes in this diff comments out unused parameters.
This will allow us to enable -Wunused-parameter as error.

#accept2ship

* add opencv dependencies to caffe2

The video input op requires additional opencv packages. This is to add them to
cmake so that it can build

* Add clip_by_value option in gradient clipping

Add clip_by_value option in gradient clipping

when the value is bigger than max or smaller than min, do the clip

* std::round compat
2018-04-17 23:36:40 -07:00
Yinghai Lu
ef8f556212
[Caffe2] Changes done inside Facebook (#6378)
* fix unit test for sqrt op

From the error logging:

[idx, grad, grad_estimate] are:
[[ 146.            0.5           0.45776367]
 [ 147.            0.5           0.45776367]

The gradient == 0.5 is correct, which means the SqrtOp and its gradient is doing right job. (Because y = sqrt(x), loss = y^2/2 = x/2, and then d(loss)/dx = 1/2 = 0.5; )

The test failed because of numerical problem of grad_estimate (in unit test). It can be because the step_size is small, and float precision is not high (when there are multiple elements in the tensor, we do sum(y^2) to compute loss)

This diff
- increase the step size, and also move the test cases to be further away from 0 (where sqrt(x) is not well defined) to be safe :)
- also clean up, and merge the test case for inplace Vs. non-inplace

Tested with:

`CAFFE2_HYPOTHESIS_PROFILE=debug ai_bt caffe2/caffe2/python/operator_test:elementwise_ops_test -- "test_sqrt"`

* CompositeReader & CompositeReaderBuilder

A new type of reader gluing multiple readers together.

* Back out "Revert D7394363: [GanH]: Log D Trick for Cross Entropy with Sigmoid"

Original commit changeset: 9325a4356dbe

* [dai][WIP] convert params to int8 on ps before sending to trainer

Add float->uint8 conversion in addition to float->fp16 conversion in model_saver.

* [easy] improve unit test for sparse length sum ops

as desc.

#accept2ship

* Update GitHub upstream to 771fcb3455

* move sparse hash unique ops to OOS and add unit tests

- move the SparseHash version to OOS, since 'sparsehash' is already deps of caffe2 OOS: https://fburl.com/arssw4n1
- The 'SparseHash' engine is also being used in OOS, so the SparseHash version shall be in OOS to reduce confusion: https://fburl.com/o5ea7ah2

- fix the CUDA UniqueOp for the case when batch is empty.
- add unit test

* group_norm_op for caffe2

This is the cuda op for Group Normalization (GN): https://arxiv.org/abs/1803.08494

This code implements GN in one op that computes Y=gamma * (X-mu) / sigma + beta and also its gradients. It is expected to have minimal memory consumption (similar to the BN op), without creating new blobs if GN were implemented as several ops (e.g., reshape, norm_mean/std, affine_channel).

* Resubmit D7405233: disappeared in D7464958

OOS publish causes the op missing -- however, test was still there

* [c2] add sparse hash engine for cuda unique op

The SparseHash version of UniqueOp copy input tensor to CPU, and make use of sparse hash map to get unique output, and then copy back to GPU.

* [dper][gpu] enable unit testing gpu trainer for sparse nn

to debug the GPU trainer using mock data in unit test.

make it easier to develop GPU trainer for new models.

* Reuse Gloo context for Synchronize() calls

Previously we were creating (and leaking) the Gloo context on each call to Synchronize(). Now only run the common world op and create the barrier net once, then run the barrier net on each Synchronize() call. Since timeout is associated with the Gloo context, assert that the timeout is fixed instead of trying to handle the complexity of multiple timeouts (and associated contexts).

* [GanH/WGAN][1/n]: add FC param clipping

as titled

* [mobile] minimizing changes between caffe2_benchmark and speed_benchmark

* [GanH]: enable diagnose within model

avoid finding blob names but to directly enable inside the model

* Add `net_transformer_fun` option to DPM

This callback allows for various transformations to be made to the
model after gradient operators have been added. The immediate motivation for
this is to allow transformations such has "checkpoint-and-recompute" which
allow trading off memory for additional compute.

Adding several callbacks like this has made DPM's API less than ideal at this
stage. However, I could not find any reasonable alternative.

* [DT] [33/n] Compile flow task groups

task groups need to compiled in order to pickle the object in fblearner. However I also changed the Job's compile function as creating new object is not necessary.

* Initial commit for sparse_normalize vectorization and benchmark

* [GanH]: LB Calibration for JSD

as titled

* Tracing event in async executor

Adding event tracing through TRACE_EVENT macro in async executor

* [Resubmit] D7409751 Reseting book-keeping blobs when the reservoir is reset

D7409751 got lost in D7464958

* Visualizing realtime weights values

we want to visualize the weights values as optimizer is iterating. This diff supports to visual the weights at an assigned index.
Currently, we assume the blob to be 2 dimensional.

* [GanH][Easy]: Fix Homotopy Weighting

apparantely, there was a bug in homotopy weight (alpha, beta) update

* [c2] move sparse hash unique op out of oss

so that oss do not need to depend on google hash map.

* Get rid of std::round as it's not supported on Android

* Revert changes on setup.py

* Skip shaky test on Dataio

* fix
2018-04-10 21:11:43 -07:00
Orion Reblitz-Richardson
1d5780d42c Remove Apache headers from source.
* LICENSE file contains details, so removing from individual source files.
2018-03-27 13:10:18 -07:00
Qinqing Zheng
566a25e1e4 Add keyword argument to PipeReaderBuilder (#2381)
att
2018-03-22 14:17:47 -07:00
Kittipat Virochsiri
9be2de507b Cleaning up ReaderBuilder interface
The way `splits()` is currently used is so convoluted. It's impossible to compose ReaderBuilder. I'm working on a composite reader so this is a prerequisite for it.

The idea is that the ReaderBuilder should maintain the states it needs to create a reader. Any setup is done through the new `setup()` method. Currently, `setup()` should only be called once, but, if needed, it should be safe to call it multiple times.
2018-03-20 13:34:22 -07:00
Qinqing Zheng
9acac2a513 Pass in task groups to PipedReaderBuilder (#2182) 2018-03-08 16:16:57 -08:00
Kittipat Virochsiri
51267095d5 Remove enqueue_splits() from ReaderBuilder
Summary: The interface is not used anywhere AFAICT; cleaning up to make it less confusing.

Reviewed By: kuttas

Differential Revision: D6867040

fbshipit-source-id: 3e8a77df76ef09c6864c308561825777b326f76c
2018-02-09 12:20:53 -08:00
Kutta Srinivasan
bb04034bf7 Adding a time limit reader
Summary: ReaderWithTimeLimit() class to stop after a certain amount of time

Reviewed By: boryiingsu

Differential Revision: D6477623

fbshipit-source-id: 165874c9344b0c9c7e0b33e12e72e24c46669cb2
2018-01-02 11:33:53 -08:00
Yangqing Jia
8286ce1e3a Re-license to Apache
Summary: Closes https://github.com/caffe2/caffe2/pull/1260

Differential Revision: D5906739

Pulled By: Yangqing

fbshipit-source-id: e482ba9ba60b5337d9165f28f7ec68d4518a0902
2017-09-28 16:22:00 -07:00
Aapo Kyrola
ad68f623f2 task api, fix comments - a bit cleanup
Summary:
Comments say experimental: don't use it. But these functions are used in the critical path from pipeline.py, so better to remove the comment?

Also changed if-else to first check for None. Although python does not crash with getattr(None, "x"), it is confusing.

Some lint issues.

Reviewed By: azzolini

Differential Revision: D5853639

fbshipit-source-id: 977de5ba0ea3ae26343ae5fcacac883faf892b0e
2017-09-18 21:43:20 -07:00
Kittipat Virochsiri
27433e978c Make piper of PipedReaderBuilder takes arguments
Summary: Allow context to be passed into piper function

Reviewed By: volkhin

Differential Revision: D5684716

fbshipit-source-id: 693f0464fe28f8692d75901705a85a0a413a7bed
2017-09-08 13:46:29 -07:00
haracejacob
2ec294a8bb Fix a few typos and grammars in comment
Summary:
Fix a few typos and grammars in comment

by using language-check, python library
spell_checker source code is here : https://github.com/17-1-SKKU-OSS/011A/blob/master/spell_checker/spell_checker.py
here is the text file which indicates what things should be fixed :  https://github.com/17-1-SKKU-OSS/011A/tree/master/spell_checker/fix/caffe2
Closes https://github.com/caffe2/caffe2/pull/719

Differential Revision: D5165118

Pulled By: aaronmarkham

fbshipit-source-id: 7fb8ef7a99d03cd5fd2f9ebdb01b9865e90fc37b
2017-06-14 18:22:39 -07:00
Aarti Basant
93ac6a9837 checkpointing for distributed hive reader.
Summary:
The goal of this diff is:
1) Enable checkpointing to honor batches_per_epoch
2) Resume hive_readers mid-split

Reviewed By: azzolini

Differential Revision: D5004212

fbshipit-source-id: 2ff5df30ba946eefadd109d80056cde67398a080
2017-06-06 14:20:06 -07:00
Aaron Markham
58f7f2b441 doxygen python block added
Summary: Closes https://github.com/caffe2/caffe2/pull/226

Differential Revision: D4793550

Pulled By: JoelMarcey

fbshipit-source-id: cc33e58186304fa8dcac2ee9115dcc271d785b1e
2017-03-29 06:46:16 -07:00
Dmytro Dzhulgakov
b61aaa90b6 Stop multi_reader if we run out of data before max_examples
Summary:
Before we didn't propagate the 'out-of-data' signal if splits_per_epoch wasn't specified.

Right now it's a hacky fix (just reuse ReaderWithLimit). azzolini - any suggestions of more elegant solution? I can create an extra reader that just export "is empty" signal out.

Overall, I guess we need to turn global_queue into a more sustainable unittest that verifies all possible combinations - I'm still not sure it's correct :-\

Reviewed By: xianjiec

Differential Revision: D4665677

fbshipit-source-id: fe44d10ee82c3383145635e67dea1d9b666e061f
2017-03-10 18:03:57 -08:00
Alexander Sidorov
ea9f4da368 fix typo in TextFileReader
Summary: as title

Reviewed By: bwasti

Differential Revision: D4591870

fbshipit-source-id: 01912ee75b036335402c7b4a5b147f20a50ce95b
2017-02-21 14:02:48 -08:00
Alisson Gusatti Azzolini
3bb8755067 Use multi_reader directly
Summary: This makes sure dper_example is compatible with the new way of defining checkpoint epochs. See D4499320.

Reviewed By: xianjiec

Differential Revision: D4511618

fbshipit-source-id: f5188010cdefe3739f87f6049d1ea6aee765c514
2017-02-06 09:59:20 -08:00
Zhao Tan
d8dff5853e Add numSample field for preComputing
Summary: For customers like Ads, Feeds, MarketPlace, their training data size is super large. It is unnecessary and costly to go over all the data to compute meta information. In this diff, numSample option is added in preCompute, so users have control over how many samples they want to use when computing meta information.

Differential Revision: D4492399

fbshipit-source-id: 7199381d226ee6300a959fc5e116d39984d199fc
2017-02-02 13:59:30 -08:00
Yangqing Jia
589398950f fbsync at f5a877 2016-11-18 15:41:06 -08:00
Yangqing Jia
238ceab825 fbsync. TODO: check if build files need update. 2016-11-15 00:00:46 -08:00
Yangqing Jia
d1e9215184 fbsync 2016-10-07 13:08:53 -07:00
Yangqing Jia
0a09d09431 fbsync 2016-09-08 17:56:14 -07:00
Yangqing Jia
b23e51d467 chunky sync 2016-09-06 15:55:19 -07:00
Yangqing Jia
05512d1e10 sync 2016-08-10 11:02:15 -07:00
Yangqing Jia
1ede7a7ff0 more build updates:
(1) nccl submodule, cnmem submodule
(2) mpi ops fallback test
(3) a bit more blob interface
(4) fixed tests
(5) caffe2.python.io -> caffe2.python.dataio to avoid name conflicts
(6) In the build system autogen __init__.py instead of having manual
rules just to copy over an empty __init__.py.
2016-08-02 23:28:23 -07:00