Commit Graph

189 Commits

Author SHA1 Message Date
HyunJun
a69910868a Fix possible padding length overflow in DistributedSampler (#45329)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/45324

This fix handles cases for `len(dataset) * 2 < num_replica` in DistributedSampler. (which previous code resulted in error.)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/45329

Reviewed By: mruberry

Differential Revision: D24205035

Pulled By: rohan-varma

fbshipit-source-id: f94329d9c1e7deaee41e5af319e7c7d0c741910c
2020-10-14 17:19:44 -07:00
Vitaly Fedyunin
31ee5d8d8b Adding information how to control randomness with DataLoader (#45749)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/45749

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D24088407

Pulled By: VitalyFedyunin

fbshipit-source-id: 398b73ec5e8c83000ebc692001da847fc0aaa48f
2020-10-12 16:57:58 -07:00
Andy Zhang
ce82b522c8 Define objects using classes instead of namedtuples in torch.utils.data._utils.worker (#45870)
Summary:
This PR fixes a bug when torch is used with pyspark, by converting namedtuples in `torch.utils.data._utils.worker` into classes.

Before this PR, creating an IterableDataset and then running `list(torch.utils.data.DataLoader(MyIterableDataset(...), num_workers=2)))` will not terminate, if pyspark is also being used. This is because pyspark hijacks namedtuples to make them pickleable ([see here](https://github.com/apache/spark/blob/master/python/pyspark/serializers.py#L370)). So `_IterableDatasetStopIteration` would be modified, and then the check at [this line in dataloader.py](5472426b9f/torch/utils/data/dataloader.py (L1072)) is never true.
Converting the namedtuples to classes avoids this hijack and allows the iteration to correctly stop when signaled.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/45870

Reviewed By: ngimel

Differential Revision: D24162748

Pulled By: albanD

fbshipit-source-id: 52f009784500fa594b2bbd15a8b2e486e00c37fb
2020-10-07 15:03:38 -07:00
Erjia Guan
96540e918c Add ShuffleDataset with buffer (#45290)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/45290

Test Plan: Imported from OSS

Reviewed By: gchanan

Differential Revision: D24001084

Pulled By: erjia-guan

fbshipit-source-id: d8a7455cf3f18e1f8c1edc53c42c1a99c8573c51
2020-09-30 07:58:15 -07:00
Guilherme Leobas
eb39542e67 Add typing annotations for torch.utils.data.* modules (#44136)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/44135

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44136

Reviewed By: gchanan

Differential Revision: D23963273

Pulled By: ezyang

fbshipit-source-id: 939234dddbe89949bd8e5ff05d06f6c8add6935c
2020-09-29 18:12:05 -07:00
Natalia Gimelshein
74c3dcd1d2 Revert D23725053: [pytorch][PR] change self.generator to generator
Test Plan: revert-hammer

Differential Revision:
D23725053 (a011b86115)

Original commit changeset: 89706313013d

fbshipit-source-id: 035214f0d4298d29a52f8032d364b52dfd956fe8
2020-09-17 09:42:37 -07:00
Fang Zhang
a011b86115 change self.generator to generator (#44461)
Summary:
bug fix

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44461

Reviewed By: mruberry

Differential Revision: D23725053

Pulled By: ngimel

fbshipit-source-id: 89706313013d9eae96aaaf144924867457efd2c0
2020-09-16 11:32:17 -07:00
Emilio Castillo
5472426b9f Reset DataLoader workers instead of creating new ones (#35795)
Summary:
This PR needs discussion as it changes the behavior of `DataLoader`. It can be closed if its not considered a good practice.

Currently, the `DataLoader` spawns a new `_BaseDataLoaderIter` object every epoch,
In the case of the multiprocess DataLoader, every epoch the worker processes are re-created and they make a copy of the original `Dataset` object.
If users want to cache data or do some tracking on their datasets, all their data will be wiped out every epoch. Notice that this doesn't happen when the number of workers is 0. giving some inconsistencies with the multiprocess and serial data loaders.

This PR keeps the `_BaseDataLoaderIter` object alive and just resets it within epochs, so the workers remain active and so their own `Dataset` objects. People seem to file issues about this often.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/35795

Reviewed By: ailzhang

Differential Revision: D23426612

Pulled By: VitalyFedyunin

fbshipit-source-id: e16950036bae35548cd0cfa78faa06b6c232a2ea
2020-09-01 11:48:00 -07:00
Akihiro Nitta
f17d7a5556 Fix exception chaining in torch/ (#43836)
Summary:
## Motivation
Fixes https://github.com/pytorch/pytorch/issues/43770.

## Description of the change
This PR fixes exception chaining only in files under `torch/` where appropriate.
To fix exception chaining, I used either:
1. `raise new_exception from old_exception` where `new_exception` itself seems not descriptive enough to debug or `old_exception` delivers valuable information.
2. `raise new_exception from None` where raising both of `new_exception` and `old_exception` seems a bit noisy and redundant.
I subjectively chose which one to use from the above options.

## List of lines containing raise in except clause:
I wrote [this simple script](https://gist.github.com/akihironitta/4223c1b32404b36c1b349d70c4c93b4d) using [ast](https://docs.python.org/3.8/library/ast.html#module-ast) to list lines where `raise`ing in `except` clause.

- [x] 000739c31a/torch/jit/annotations.py (L35)
- [x] 000739c31a/torch/jit/annotations.py (L150)
- [x] 000739c31a/torch/jit/annotations.py (L158)
- [x] 000739c31a/torch/jit/annotations.py (L231)
- [x] 000739c31a/torch/jit/_trace.py (L432)
- [x] 000739c31a/torch/nn/utils/prune.py (L192)
- [x] 000739c31a/torch/cuda/nvtx.py (L7)
- [x] 000739c31a/torch/utils/cpp_extension.py (L1537)
- [x] 000739c31a/torch/utils/tensorboard/_pytorch_graph.py (L292)
- [x] 000739c31a/torch/utils/data/dataloader.py (L835)
- [x] 000739c31a/torch/utils/data/dataloader.py (L849)
- [x] 000739c31a/torch/utils/data/dataloader.py (L856)
- [x] 000739c31a/torch/testing/_internal/common_utils.py (L186)
- [x] 000739c31a/torch/testing/_internal/common_utils.py (L189)
- [x] 000739c31a/torch/testing/_internal/common_utils.py (L424)
- [x] 000739c31a/torch/testing/_internal/common_utils.py (L1279)
- [x] 000739c31a/torch/testing/_internal/common_utils.py (L1283)
- [x] 000739c31a/torch/testing/_internal/common_utils.py (L1356)
- [x] 000739c31a/torch/testing/_internal/common_utils.py (L1388)
- [x] 000739c31a/torch/testing/_internal/common_utils.py (L1391)
- [ ] 000739c31a/torch/testing/_internal/common_utils.py (L1412)
- [x] 000739c31a/torch/testing/_internal/codegen/random_topo_test.py (L310)
- [x] 000739c31a/torch/testing/_internal/codegen/random_topo_test.py (L329)
- [x] 000739c31a/torch/testing/_internal/codegen/random_topo_test.py (L332)
- [x] 000739c31a/torch/testing/_internal/jit_utils.py (L183)
- [x] 000739c31a/torch/testing/_internal/common_nn.py (L4789)
- [x] 000739c31a/torch/onnx/utils.py (L367)
- [x] 000739c31a/torch/onnx/utils.py (L659)
- [x] 000739c31a/torch/onnx/utils.py (L892)
- [x] 000739c31a/torch/onnx/utils.py (L897)
- [x] 000739c31a/torch/serialization.py (L108)
- [x] 000739c31a/torch/serialization.py (L754)
- [x] 000739c31a/torch/distributed/rpc/_testing/faulty_agent_backend_registry.py (L76)
- [x] 000739c31a/torch/distributed/rpc/backend_registry.py (L260)
- [x] 000739c31a/torch/distributed/distributed_c10d.py (L184)
- [x] 000739c31a/torch/_utils_internal.py (L57)
- [x] 000739c31a/torch/hub.py (L494)
- [x] 000739c31a/torch/contrib/_tensorboard_vis.py (L16)
- [x] 000739c31a/torch/distributions/lowrank_multivariate_normal.py (L100)
- [x] 000739c31a/torch/distributions/constraint_registry.py (L142)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/43836

Reviewed By: ailzhang

Differential Revision: D23431212

Pulled By: malfet

fbshipit-source-id: 5f7f41b391164a5ad0efc06e55cd58c23408a921
2020-08-31 20:26:23 -07:00
Ralf Gommers
da32bf4cc6 Move type annotations for remaining torch.utils stub files inline (#43406)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/43406

Reviewed By: mruberry

Differential Revision: D23319736

Pulled By: malfet

fbshipit-source-id: e25fbb49f27aa4893590b022441303d6d98263a9
2020-08-31 18:44:09 -07:00
Ralf Gommers
bcab2d6848 And type annotations for cpp_extension, utils.data, signal_handling (#42647)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/42647

Reviewed By: ezyang

Differential Revision: D22967041

Pulled By: malfet

fbshipit-source-id: 35e124da0be56934faef56834a93b2b400decf66
2020-08-06 09:42:07 -07:00
Rohan Varma
5ed7cd0025 Allow drop_last option in DistributedSampler (#41171)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41171

DistributedSampler allows data to be split evenly across workers in
DDP, but it has always added additional samples in order for the data to be
evenly split in the case that the # of samples is not evenly divisible by the
number of workers. This can cause issues such as when doing distributed
validation accuracy, where multiple samples could be considered twice.

This PR adds a drop_last option where the tail of the data is dropped such that
the effective dataset size is still evenly divisible across the workers. This
ensures that DDP can train fine (there is no uneven inputs) and each replica
gets an equal number of data indices.
ghstack-source-id: 108617516

Test Plan: Added unittest

Reviewed By: mrshenli

Differential Revision: D22449974

fbshipit-source-id: e3156b751f5262cc66437b9191818b78aee8ddea
2020-07-28 11:33:08 -07:00
yl-to
1b55e2b043 add prefetch_factor for multiprocessing prefetching process (#41130)
Summary:
fix https://github.com/pytorch/pytorch/issues/40604
Add parameter to Dataloader to configure the per-worker prefetch number.
Before this edit, the prefetch process always prefetch 2 * num_workers data items, this commit help us make this configurable, e.x. you can specify to prefetch 10 * num_workers data items.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41130

Reviewed By: izdeby

Differential Revision: D22705288

Pulled By: albanD

fbshipit-source-id: 2c483fce409735fef1351eb5aa0b033f8e596561
2020-07-24 08:38:13 -07:00
Daiming Yang
ad7133d3c1 Patch for #40026 RandomSampler generates samples one at a time when replacement=True (#41682)
Summary:
Fix https://github.com/pytorch/pytorch/issues/32530
Fix/Patch https://github.com/pytorch/pytorch/pull/40026

Resubmit this patch and fix the type error.

Force the input type to `manual_seed()` in `sampler.py` to be `int`.

ezyang

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41682

Reviewed By: izdeby

Differential Revision: D22665477

Pulled By: ezyang

fbshipit-source-id: 1725c8aa742c31e74321f20448f4b6a392afb38d
2020-07-22 13:45:09 -07:00
Shen Li
86590f226e Revert D22519869: [pytorch][PR] RandomSampler generates samples one at a time when replacement=True
Test Plan: revert-hammer

Differential Revision:
D22519869 (09647e1287)

Original commit changeset: be6585002586

fbshipit-source-id: 31ca5ceb24dd0b291f46f427a6f30f1037252a5d
2020-07-16 12:59:10 -07:00
Daiming Yang
09647e1287 RandomSampler generates samples one at a time when replacement=True (#40026)
Summary:
Fix https://github.com/pytorch/pytorch/issues/32530

I used the next() function to generate samples one at a time. To compensate replacement=False, I added a variable called "sample_list" to RandomSampler for random permutation.

cc SsnL

Pull Request resolved: https://github.com/pytorch/pytorch/pull/40026

Reviewed By: zhangguanheng66

Differential Revision: D22519869

Pulled By: ezyang

fbshipit-source-id: be65850025864d659a713b3bc461b25d6d0048a2
2020-07-16 11:42:32 -07:00
SsnL
1922f2212a Make IterableDataset dataloader.__len__ warning clearer (#41175)
Summary:
Based on discussion with jlucier (https://github.com/pytorch/pytorch/pull/38925#issuecomment-655859195) . `batch_size` change isn't made because data loader only has the notion of `batch_sampler`, not batch size. If `batch_size` dependent sharding is needed, users can still access it from their own code.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41175

Differential Revision: D22456525

Pulled By: zou3519

fbshipit-source-id: 5281fcf14807f219de06e32107d5fe7d5b6a8623
2020-07-09 13:49:29 -07:00
Wojciech Baranowski
0e09511af9 type annotations for dataloader, dataset, sampler (#39392)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/38913

Pull Request resolved: https://github.com/pytorch/pytorch/pull/39392

Reviewed By: anjali411

Differential Revision: D22102489

Pulled By: zou3519

fbshipit-source-id: acb68d9521145f0b047214d62b5bdc5a0d1b9be4
2020-07-07 07:16:18 -07:00
Mike Ruberry
d753f1c2e1 Fixes formatting of vander, count_nonzero, DistributedSampler documentation (#41025)
Summary:
Bundle of small edits to fix formatting.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41025

Differential Revision: D22398364

Pulled By: mruberry

fbshipit-source-id: 8d484cb52a1cf4a8eb1f64914574250c9fd5043d
2020-07-06 14:26:13 -07:00
mungsoo
c38a5cba0d Remove duplicate assignment in collate.py (#40655)
Summary:
Duplicated assignment
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40655

Reviewed By: ezyang

Differential Revision: D22308827

Pulled By: colesbury

fbshipit-source-id: 48361da8994b3ca00ef29e9afd3ec2672266f00a
2020-07-06 12:37:59 -07:00
Linyuan Gong
0a75234934 Allow np.memmap objects (numpy arrays based on files) to be processed… (#39847)
Summary:
Allow np.memmap objects to be processed by default_collate

np.memmap objects has the same behavior as numpy arrays, and the only difference is that they are stored in a binary file on the disk. However, the default_collate function used by PyTorch DataLoader only accepts np.array, and rejects np.memmap by type checking. This commit allows np.memmap objects to be processed by default_collate. In this way, users can use in-disk large arrays with PyTorch DataLoader.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39847

Reviewed By: ezyang

Differential Revision: D22284650

Pulled By: zou3519

fbshipit-source-id: 003e3208a2afd1afc2e4640df14b3446201e00b4
2020-06-30 15:00:20 -07:00
Tongzhou Wang
23db54acdf [DataLoader] add repr for WorkerInfo (#39975)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/39975

Differential Revision: D22039414

Pulled By: ezyang

fbshipit-source-id: 230f68a91fca901bce652fdf88ba88167f39b978
2020-06-16 08:19:32 -07:00
Tongzhou Wang
019eeb3183 Kill DataLoader worker when we can't join (#39869)
Summary:
There still are occasional reports of DataLoader workers not exiting (e.g., https://github.com/pytorch/pytorch/issues/39570). Before we figure out why, we should just kill them if the join timesout to prevent hanging.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39869

Differential Revision: D22018501

Pulled By: ezyang

fbshipit-source-id: 66a00d0f5b3e303b6106b336949176b3ff8ac8ae
2020-06-15 11:18:23 -07:00
ShawnZhong
c8c53c802e Add generator= kwarg for DataLoader & random samplers (#39737)
Summary:
Fix https://github.com/pytorch/pytorch/issues/39572

Add `generator=` kwarg for DataLoader & random samplers

cc: SsnL, deeppatel4557, albanD, mitar
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39737

Differential Revision: D22019132

Pulled By: albanD

fbshipit-source-id: 835e08b86c5396bc0b0e41057661306b15394d6e
2020-06-15 07:01:20 -07:00
Daiming Yang
0b90b9cdd3 Allow shuffle when auto-batching disabled in DataLoader (#39865)
Summary:
Fix https://github.com/pytorch/pytorch/issues/35761
cc SsnL

Note: closed the other PR for this new branch.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39865

Differential Revision: D22003612

Pulled By: ezyang

fbshipit-source-id: 26aecd1b298fe99d3924f4c8157cd6cae2561c7c
2020-06-11 15:17:46 -07:00
Tongzhou Wang
479b04e26a Improve DistributedSampler docs and add seed option (#39628)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/39628

Differential Revision: D21920373

Pulled By: mrshenli

fbshipit-source-id: d7d1005db6feef4a83a1a094b85fcff964bd0ac6
2020-06-06 14:24:22 -07:00
Hong Xu
283a3ff16d The exception raised when RandomSampler.replacement is non-boolean should be TypeError (#36547)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/36547

Differential Revision: D21818752

Pulled By: ezyang

fbshipit-source-id: 7502a24a0df134c44ac72959ba992777c873f8e9
2020-06-02 06:54:02 -07:00
Donna Choi
3d2fce6bc3 Change len(DataLoader) for IterableDataset (#38925)
Summary:
Fix https://github.com/pytorch/pytorch/issues/36176

One-liner change to ensure that ```len(loader) == (len(dataset) // batch_size)``` for IterableDataset.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38925

Differential Revision: D21731587

Pulled By: ezyang

fbshipit-source-id: 59a086165a004c0c1c8a1ee0776b1444bd26de23
2020-05-27 11:56:41 -07:00
Donna Choi
8c07a98adc Error out of default_collate for lists of unequal size (#38492)
Summary:
Fix issue https://github.com/pytorch/pytorch/issues/23141#

In the below example ```default_collate``` collates each element of the list. Since the second element isn't present in all samples, it is discarded:
```
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import numpy as np

class CustomDataset(Dataset):
    def __len__(self):
        return 2

    def __getitem__(self, idx):
        tmp = {
            "foo": np.array([1, 2, 3]),
            "bar": ["X"] * (idx+1),
        }

        return tmp

training = CustomDataset()

for batch in DataLoader(training, batch_size=2):
    print(batch)
```
Yields
```
{
  'foo': tensor(
    [
      [1, 2, 3],
      [1, 2, 3]
    ]
  ),
  'bar': [
      ('X', 'X'),
    ]
}
```

Based on discussion in the issue, it seems the best course of action is to error out in this case. This seems consistent with what is done for tensor elements, as seen in [TensorShape.cpp line 1066](https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/TensorShape.cpp#L1060) which is called when ```torch.stack``` is called. In this PR, I introduce a similar message to error out for lists.

SsnL
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38492

Differential Revision: D21620396

Pulled By: ezyang

fbshipit-source-id: 17f59fbb1ed1f0d9b2185c95b9ebe55ece701b0c
2020-05-18 14:53:33 -07:00
SsnL
b5868b2833 Relax sampler check in BatchSampler (#38403)
Summary:
Since the check was added in https://github.com/pytorch/pytorch/pull/6249, one can not pass an iterable as a sampler to the data loader anymore, which was a very handy feature (e.g., https://github.com/pytorch/pytorch/issues/1337). I think the check should be removed for two-fold reasons:
1. It is too strict. There is no reason that it should not be a general iterable.
2. It is inconsistent. In `DataLoader` (the main place where people use samplers), you can pass a general iterable as `batch_sampler` but not `sampler` due to this check.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38403

Differential Revision: D21555958

Pulled By: soumith

fbshipit-source-id: c7267bb99a31edd8f2750689205d6edc5dab5cff
2020-05-13 22:24:29 -07:00
Edward Yang
6edf340338 Delete torch/__init__.pyi, deferring to direct extension stubs (#38157)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38157

This removes the error prone process of assembling `torch/__init__.pyi`
(and frequently forgetting to expose things), since now we can simply
rely on the true source file to get things done.  Most of the old
codegen in gen_pyi.py is now rerouted to various files:

- `torch/_C/__init__.pyi` (the dumping pile of all misc bindings)
- `torch/_C/_nn.pyi` (NN function bindings)
- `torch/_C/_VariableFunctions.pyi` (torch function bindings)

`torch.types` grew a bunch more definitions that previously where
defined in `torch/__init__.pyi`

Some miscellaneous changes

- Fixed a bug where we treat single TensorList argument as implying
  varargs are accepted. This is actually only supported on IntList.
  This means we can correctly generate a stub for dequantize.
- Add missing manual stub for nonzero
- Switched torch/onnx/operators.py to directly refer to _C module,
  since apparently mypy doesn't think that methods prefixed with
  underscores get reexported.  This may be a recurring theme; maybe
  we need to find a better way to solve it.

Because I was really lazy, I dumped namedtuple definitions in both
`torch._C` and `torch._C._VariableFunctions`.  This is definitely wrong.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D21497400

Pulled By: ezyang

fbshipit-source-id: 07b126141c82efaca37be27c07255cb2b9b3f064
2020-05-11 07:20:13 -07:00
Rohan Varma
deb4100928 [DistributedSampler] Only create torch.generator and seed when shuffling (#37604)
Summary:
We don't need to create `torch.Generator()` and seed it if we are not shuffling.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37604

Differential Revision: D21346167

Pulled By: rohan-varma

fbshipit-source-id: 6ed560d236bc5c026a7d321755ddc02a29db1604
2020-05-01 10:56:40 -07:00
Ralf Gommers
78d5707041 Fix type annotations and make MyPy run on torch/ (#36584)
Summary:
This PR fixes a couple of syntax errors in `torch/` that prevent MyPy from running, fixes simple type annotation errors (e.g. missing `from typing import List, Tuple, Optional`), and adds granular ignores for errors in particular modules as well as for missing typing in third party packages.

As a result, running `mypy` in the root dir of the repo now runs on:
- `torch/`
- `aten/src/ATen/function_wrapper.py` (the only file already covered in CI)

In CI this runs on GitHub Actions, job Lint, sub-job "quick-checks", task "MyPy typecheck". It should give (right now): `Success: no issues found in 329 source files`.

Here are the details of the original 855 errors when running `mypy torch` on current master (after fixing the couple of syntax errors that prevent `mypy` from running through):

<details>

```
torch/utils/tensorboard/_proto_graph.py:1: error: Cannot find implementation or library stub for module named 'tensorboard.compat.proto.node_def_pb2'
torch/utils/tensorboard/_proto_graph.py:2: error: Cannot find implementation or library stub for module named 'tensorboard.compat.proto.attr_value_pb2'
torch/utils/tensorboard/_proto_graph.py:3: error: Cannot find implementation or library stub for module named 'tensorboard.compat.proto.tensor_shape_pb2'
torch/utils/backcompat/__init__.py:1: error: Cannot find implementation or library stub for module named 'torch._C'
torch/for_onnx/__init__.py:1: error: Cannot find implementation or library stub for module named 'torch.for_onnx.onnx'
torch/cuda/nvtx.py:2: error: Cannot find implementation or library stub for module named 'torch._C'
torch/utils/show_pickle.py:59: error: Name 'pickle._Unpickler' is not defined
torch/utils/show_pickle.py:113: error: "Type[PrettyPrinter]" has no attribute "_dispatch"
torch/utils/tensorboard/_onnx_graph.py:1: error: Cannot find implementation or library stub for module named 'tensorboard.compat.proto.graph_pb2'
torch/utils/tensorboard/_onnx_graph.py:2: error: Cannot find implementation or library stub for module named 'tensorboard.compat.proto.node_def_pb2'
torch/utils/tensorboard/_onnx_graph.py:3: error: Cannot find implementation or library stub for module named 'tensorboard.compat.proto.versions_pb2'
torch/utils/tensorboard/_onnx_graph.py:4: error: Cannot find implementation or library stub for module named 'tensorboard.compat.proto.attr_value_pb2'
torch/utils/tensorboard/_onnx_graph.py:5: error: Cannot find implementation or library stub for module named 'tensorboard.compat.proto.tensor_shape_pb2'
torch/utils/tensorboard/_onnx_graph.py:9: error: Cannot find implementation or library stub for module named 'onnx'
torch/contrib/_tensorboard_vis.py:10: error: Cannot find implementation or library stub for module named 'tensorflow.core.util'
torch/contrib/_tensorboard_vis.py:11: error: Cannot find implementation or library stub for module named 'tensorflow.core.framework'
torch/contrib/_tensorboard_vis.py:12: error: Cannot find implementation or library stub for module named 'tensorflow.python.summary.writer.writer'
torch/utils/hipify/hipify_python.py:43: error: Need type annotation for 'CAFFE2_TEMPLATE_MAP' (hint: "CAFFE2_TEMPLATE_MAP: Dict[<type>, <type>] = ...")
torch/utils/hipify/hipify_python.py:636: error: "object" has no attribute "items"
torch/nn/_reduction.py:27: error: Name 'Optional' is not defined
torch/nn/_reduction.py:27: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/nn/_reduction.py:47: error: Name 'Optional' is not defined
torch/nn/_reduction.py:47: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/utils/tensorboard/_utils.py:17: error: Skipping analyzing 'matplotlib.pyplot': found module but no type hints or library stubs
torch/utils/tensorboard/_utils.py:17: error: Skipping analyzing 'matplotlib': found module but no type hints or library stubs
torch/utils/tensorboard/_utils.py:18: error: Skipping analyzing 'matplotlib.backends.backend_agg': found module but no type hints or library stubs
torch/utils/tensorboard/_utils.py:18: error: Skipping analyzing 'matplotlib.backends': found module but no type hints or library stubs
torch/nn/modules/utils.py:27: error: Name 'List' is not defined
torch/nn/modules/utils.py:27: note: Did you forget to import it from "typing"? (Suggestion: "from typing import List")
caffe2/proto/caffe2_pb2.py:17: error: Unexpected keyword argument "serialized_options" for "FileDescriptor"; did you mean "serialized_pb"?
caffe2/proto/caffe2_pb2.py:25: error: Unexpected keyword argument "serialized_options" for "EnumDescriptor"
caffe2/proto/caffe2_pb2.py:31: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:35: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:39: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:43: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:47: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:51: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:55: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:59: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:63: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:67: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:71: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:75: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:102: error: Unexpected keyword argument "serialized_options" for "EnumDescriptor"
caffe2/proto/caffe2_pb2.py:108: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:112: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:124: error: Unexpected keyword argument "serialized_options" for "EnumDescriptor"
caffe2/proto/caffe2_pb2.py:130: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:134: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:138: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:142: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:146: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:150: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:154: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:158: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:162: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:166: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:170: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:174: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:178: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:182: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:194: error: Unexpected keyword argument "serialized_options" for "EnumDescriptor"
caffe2/proto/caffe2_pb2.py:200: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:204: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:208: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:212: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:224: error: Unexpected keyword argument "serialized_options" for "EnumDescriptor"
caffe2/proto/caffe2_pb2.py:230: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:234: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:238: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:242: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:246: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:250: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:254: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:267: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:274: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:281: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:288: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:295: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:302: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:327: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:334: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:341: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:364: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:371: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:378: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:385: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:392: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:399: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:406: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:413: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:420: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:427: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:434: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:441: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:448: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:455: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:462: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:488: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:495: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:502: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:509: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:516: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:523: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:530: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:537: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:544: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:551: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:558: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:565: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:572: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:596: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:603: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:627: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:634: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:641: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:648: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:655: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:662: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:686: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:693: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:717: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:724: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:731: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:738: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:763: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:770: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:777: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:784: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:808: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:815: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:822: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:829: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:836: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:843: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:850: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:857: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:864: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:871: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:878: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:885: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:892: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:916: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:923: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:930: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:937: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:944: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:951: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:958: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:982: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:989: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:996: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1003: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1010: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1017: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1024: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1031: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1038: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1045: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1052: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1059: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1066: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1090: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:1097: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1104: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1128: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:1135: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1142: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1166: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:1173: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1180: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1187: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1194: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1218: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:1225: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1232: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1239: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1246: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1253: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1260: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1267: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1274: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1281: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1305: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:1312: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1319: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1326: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1333: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1340: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1347: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1354: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1361: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1368: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1375: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1382: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1389: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1396: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1420: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:1427: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1434: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1441: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1465: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:1472: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1479: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1486: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1493: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1500: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1507: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1514: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1538: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:1545: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1552: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1559: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1566: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1667: error: "GeneratedProtocolMessageType" has no attribute "Segment"
torch/multiprocessing/queue.py:4: error: No library stub file for standard library module 'multiprocessing.reduction'
caffe2/proto/torch_pb2.py:18: error: Unexpected keyword argument "serialized_options" for "FileDescriptor"; did you mean "serialized_pb"?
caffe2/proto/torch_pb2.py:27: error: Unexpected keyword argument "serialized_options" for "EnumDescriptor"
caffe2/proto/torch_pb2.py:33: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/torch_pb2.py:50: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/torch_pb2.py:57: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:81: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/torch_pb2.py:88: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:95: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:102: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:109: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:116: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:123: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:130: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:137: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:144: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:151: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:175: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/torch_pb2.py:182: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:189: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:196: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:220: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/torch_pb2.py:227: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:234: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:241: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:265: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/torch_pb2.py:272: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:279: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:286: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:293: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:300: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:307: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:314: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:321: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:328: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:335: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:342: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:366: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/torch_pb2.py:373: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:397: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/torch_pb2.py:404: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:411: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:418: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:425: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:432: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:17: error: Unexpected keyword argument "serialized_options" for "FileDescriptor"; did you mean "serialized_pb"?
caffe2/proto/metanet_pb2.py:29: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/metanet_pb2.py:36: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:43: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:50: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:57: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:64: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:88: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/metanet_pb2.py:95: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:102: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:126: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/metanet_pb2.py:133: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:140: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:164: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/metanet_pb2.py:171: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:178: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:202: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/metanet_pb2.py:209: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:216: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:240: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/metanet_pb2.py:247: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:254: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:261: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:268: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:275: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:282: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:289: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:296: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/__init__.py:13: error: Skipping analyzing 'caffe2.caffe2.fb.session.proto': found module but no type hints or library stubs
torch/multiprocessing/pool.py:3: error: No library stub file for standard library module 'multiprocessing.util'
torch/multiprocessing/pool.py:3: note: (Stub files are from https://github.com/python/typeshed)
caffe2/python/scope.py:10: error: Skipping analyzing 'past.builtins': found module but no type hints or library stubs
caffe2/python/__init__.py:7: error: Module has no attribute "CPU"
caffe2/python/__init__.py:8: error: Module has no attribute "CUDA"
caffe2/python/__init__.py:9: error: Module has no attribute "MKLDNN"
caffe2/python/__init__.py:10: error: Module has no attribute "OPENGL"
caffe2/python/__init__.py:11: error: Module has no attribute "OPENCL"
caffe2/python/__init__.py:12: error: Module has no attribute "IDEEP"
caffe2/python/__init__.py:13: error: Module has no attribute "HIP"
caffe2/python/__init__.py:14: error: Module has no attribute "COMPILE_TIME_MAX_DEVICE_TYPES"; maybe "PROTO_COMPILE_TIME_MAX_DEVICE_TYPES"?
caffe2/python/__init__.py:15: error: Module has no attribute "ONLY_FOR_TEST"; maybe "PROTO_ONLY_FOR_TEST"?
caffe2/python/__init__.py:34: error: Item "_Loader" of "Optional[_Loader]" has no attribute "exec_module"
caffe2/python/__init__.py:34: error: Item "None" of "Optional[_Loader]" has no attribute "exec_module"
caffe2/python/__init__.py:35: error: Module has no attribute "cuda"
caffe2/python/__init__.py:37: error: Module has no attribute "cuda"
caffe2/python/__init__.py:49: error: Module has no attribute "add_dll_directory"
torch/random.py:4: error: Cannot find implementation or library stub for module named 'torch._C'
torch/_classes.py:2: error: Cannot find implementation or library stub for module named 'torch._C'
torch/onnx/__init__.py:1: error: Cannot find implementation or library stub for module named 'torch._C'
torch/hub.py:21: error: Skipping analyzing 'tqdm.auto': found module but no type hints or library stubs
torch/hub.py:24: error: Skipping analyzing 'tqdm': found module but no type hints or library stubs
torch/hub.py:27: error: Name 'tqdm' already defined (possibly by an import)
torch/_tensor_str.py:164: error: Not all arguments converted during string formatting
torch/_ops.py:1: error: Cannot find implementation or library stub for module named 'torch._C'
torch/_linalg_utils.py:26: error: Name 'Optional' is not defined
torch/_linalg_utils.py:26: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_linalg_utils.py:26: error: Name 'Tensor' is not defined
torch/_linalg_utils.py:63: error: Name 'Tensor' is not defined
torch/_linalg_utils.py:63: error: Name 'Optional' is not defined
torch/_linalg_utils.py:63: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_linalg_utils.py:70: error: Name 'Optional' is not defined
torch/_linalg_utils.py:70: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_linalg_utils.py:70: error: Name 'Tensor' is not defined
torch/_linalg_utils.py:88: error: Name 'Tensor' is not defined
torch/_linalg_utils.py:88: error: Name 'Optional' is not defined
torch/_linalg_utils.py:88: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_linalg_utils.py:88: error: Name 'Tuple' is not defined
torch/_linalg_utils.py:88: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/_jit_internal.py:17: error: Need type annotation for 'boolean_dispatched'
torch/_jit_internal.py:474: error: Need type annotation for '_overloaded_fns' (hint: "_overloaded_fns: Dict[<type>, <type>] = ...")
torch/_jit_internal.py:512: error: Need type annotation for '_overloaded_methods' (hint: "_overloaded_methods: Dict[<type>, <type>] = ...")
torch/_jit_internal.py:648: error: Incompatible types in assignment (expression has type "FinalCls", variable has type "_SpecialForm")
torch/sparse/__init__.py:11: error: Name 'Tensor' is not defined
torch/sparse/__init__.py:71: error: Name 'Tensor' is not defined
torch/sparse/__init__.py:71: error: Name 'Optional' is not defined
torch/sparse/__init__.py:71: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/sparse/__init__.py:71: error: Name 'Tuple' is not defined
torch/sparse/__init__.py:71: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/nn/init.py:109: error: Name 'Tensor' is not defined
torch/nn/init.py:126: error: Name 'Tensor' is not defined
torch/nn/init.py:142: error: Name 'Tensor' is not defined
torch/nn/init.py:165: error: Name 'Tensor' is not defined
torch/nn/init.py:180: error: Name 'Tensor' is not defined
torch/nn/init.py:194: error: Name 'Tensor' is not defined
torch/nn/init.py:287: error: Name 'Tensor' is not defined
torch/nn/init.py:315: error: Name 'Tensor' is not defined
torch/multiprocessing/reductions.py:8: error: No library stub file for standard library module 'multiprocessing.util'
torch/multiprocessing/reductions.py:9: error: No library stub file for standard library module 'multiprocessing.reduction'
torch/multiprocessing/reductions.py:17: error: No library stub file for standard library module 'multiprocessing.resource_sharer'
torch/jit/_builtins.py:72: error: Module has no attribute "_no_grad_embedding_renorm_"
torch/jit/_builtins.py:80: error: Module has no attribute "stft"
torch/jit/_builtins.py:81: error: Module has no attribute "cdist"
torch/jit/_builtins.py:82: error: Module has no attribute "norm"
torch/jit/_builtins.py:83: error: Module has no attribute "nuclear_norm"
torch/jit/_builtins.py:84: error: Module has no attribute "frobenius_norm"
torch/backends/cudnn/__init__.py:8: error: Cannot find implementation or library stub for module named 'torch._C'
torch/backends/cudnn/__init__.py:86: error: Need type annotation for '_handles' (hint: "_handles: Dict[<type>, <type>] = ...")
torch/autograd/profiler.py:13: error: Name 'ContextDecorator' already defined (possibly by an import)
torch/autograd/function.py:2: error: Cannot find implementation or library stub for module named 'torch._C'
torch/autograd/function.py:2: note: See https://mypy.readthedocs.io/en/latest/running_mypy.html#missing-imports
torch/autograd/function.py:109: error: Unsupported dynamic base class "with_metaclass"
torch/serialization.py:609: error: "Callable[[Any], Any]" has no attribute "cache"
torch/_lowrank.py:11: error: Name 'Tensor' is not defined
torch/_lowrank.py:13: error: Name 'Optional' is not defined
torch/_lowrank.py:13: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_lowrank.py:14: error: Name 'Optional' is not defined
torch/_lowrank.py:14: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_lowrank.py:14: error: Name 'Tensor' is not defined
torch/_lowrank.py:82: error: Name 'Tensor' is not defined
torch/_lowrank.py:82: error: Name 'Optional' is not defined
torch/_lowrank.py:82: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_lowrank.py:82: error: Name 'Tuple' is not defined
torch/_lowrank.py:82: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/_lowrank.py:130: error: Name 'Tensor' is not defined
torch/_lowrank.py:130: error: Name 'Optional' is not defined
torch/_lowrank.py:130: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_lowrank.py:130: error: Name 'Tuple' is not defined
torch/_lowrank.py:130: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/_lowrank.py:167: error: Name 'Tensor' is not defined
torch/_lowrank.py:167: error: Name 'Optional' is not defined
torch/_lowrank.py:167: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_lowrank.py:167: error: Name 'Tuple' is not defined
torch/_lowrank.py:167: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/quantization/observer.py:45: error: Variable "torch.quantization.observer.ABC" is not valid as a type
torch/quantization/observer.py:45: note: See https://mypy.readthedocs.io/en/latest/common_issues.html#variables-vs-type-aliases
torch/quantization/observer.py:45: error: Invalid base class "ABC"
torch/quantization/observer.py:127: error: Name 'Tensor' is not defined
torch/quantization/observer.py:127: error: Name 'Tuple' is not defined
torch/quantization/observer.py:127: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/quantization/observer.py:172: error: Module has no attribute "per_tensor_symmetric"
torch/quantization/observer.py:172: error: Module has no attribute "per_channel_symmetric"
torch/quantization/observer.py:192: error: Name 'Tensor' is not defined
torch/quantization/observer.py:192: error: Name 'Tuple' is not defined
torch/quantization/observer.py:192: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/quantization/observer.py:233: error: Module has no attribute "per_tensor_symmetric"
torch/quantization/observer.py:233: error: Module has no attribute "per_channel_symmetric"
torch/quantization/observer.py:534: error: Name 'Tensor' is not defined
torch/quantization/observer.py:885: error: Name 'Tensor' is not defined
torch/quantization/observer.py:885: error: Name 'Tuple' is not defined
torch/quantization/observer.py:885: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/quantization/observer.py:894: error: Cannot determine type of 'max_val'
torch/quantization/observer.py:894: error: Cannot determine type of 'min_val'
torch/quantization/observer.py:899: error: Cannot determine type of 'min_val'
torch/quantization/observer.py:902: error: Name 'Tensor' is not defined
torch/quantization/observer.py:925: error: Name 'Tensor' is not defined
torch/quantization/observer.py:928: error: Cannot determine type of 'min_val'
torch/quantization/observer.py:929: error: Cannot determine type of 'max_val'
torch/quantization/observer.py:946: error: Argument "min" to "histc" has incompatible type "Tuple[Tensor, Tensor]"; expected "Union[int, float, bool]"
torch/quantization/observer.py:946: error: Argument "max" to "histc" has incompatible type "Tuple[Tensor, Tensor]"; expected "Union[int, float, bool]"
torch/quantization/observer.py:1056: error: Module has no attribute "per_tensor_symmetric"
torch/quantization/observer.py:1058: error: Module has no attribute "per_channel_symmetric"
torch/nn/quantized/functional.py:76: error: Name 'Tensor' is not defined
torch/nn/quantized/functional.py:76: error: Name 'BroadcastingList2' is not defined
torch/nn/quantized/functional.py:259: error: Name 'Tensor' is not defined
torch/nn/quantized/functional.py:259: error: Name 'Optional' is not defined
torch/nn/quantized/functional.py:259: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/nn/quantized/functional.py:289: error: Module has no attribute "ops"
torch/nn/quantized/functional.py:290: error: Module has no attribute "ops"
torch/nn/quantized/functional.py:308: error: Name 'Tensor' is not defined
torch/nn/quantized/functional.py:326: error: Name 'Tensor' is not defined
torch/nn/quantized/functional.py:356: error: Name 'Tensor' is not defined
torch/nn/quantized/functional.py:371: error: Name 'Tensor' is not defined
torch/nn/quantized/functional.py:400: error: Name 'Tensor' is not defined
torch/nn/quantized/functional.py:400: error: Name 'Optional' is not defined
torch/nn/quantized/functional.py:400: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/nn/quantized/functional.py:430: error: Name 'Tensor' is not defined
torch/nn/quantized/functional.py:448: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/linear.py:26: error: Module has no attribute "ops"
torch/nn/quantized/modules/linear.py:28: error: Module has no attribute "ops"
torch/nn/quantized/modules/functional_modules.py:40: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:47: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:54: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:61: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:68: error: Name 'List' is not defined
torch/nn/quantized/modules/functional_modules.py:68: note: Did you forget to import it from "typing"? (Suggestion: "from typing import List")
torch/nn/quantized/modules/functional_modules.py:68: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:75: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:140: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:146: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:151: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:157: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:162: error: Name 'List' is not defined
torch/nn/quantized/modules/functional_modules.py:162: note: Did you forget to import it from "typing"? (Suggestion: "from typing import List")
torch/nn/quantized/modules/functional_modules.py:162: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:168: error: Name 'Tensor' is not defined
torch/multiprocessing/spawn.py:9: error: Module 'torch.multiprocessing' has no attribute '_prctl_pr_set_pdeathsig'
torch/multiprocessing/__init__.py:28: error: Module has no attribute "__all__"
torch/jit/frontend.py:9: error: Cannot find implementation or library stub for module named 'torch._C._jit_tree_views'
torch/jit/annotations.py:6: error: Module 'torch._jit_internal' has no attribute 'BroadcastingList2'; maybe "BroadcastingList1" or "BroadcastingListCls"?
torch/jit/annotations.py:6: error: Module 'torch._jit_internal' has no attribute 'BroadcastingList3'; maybe "BroadcastingList1" or "BroadcastingListCls"?
torch/jit/annotations.py:9: error: Cannot find implementation or library stub for module named 'torch._C'
torch/distributions/distribution.py:16: error: Need type annotation for 'arg_constraints' (hint: "arg_constraints: Dict[<type>, <type>] = ...")
torch/distributions/distribution.py:74: error: Name 'arg_constraints' already defined on line 16
torch/distributions/distribution.py:84: error: Name 'support' already defined on line 15
torch/functional.py:114: error: Name 'Tuple' is not defined
torch/functional.py:114: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/functional.py:114: error: Name 'Optional' is not defined
torch/functional.py:114: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/functional.py:189: error: Incompatible types in assignment (expression has type "None", variable has type "Tensor")
torch/functional.py:200: error: Argument 1 to "_indices_product" has incompatible type "Tuple[int, ...]"; expected "List[int]"
torch/functional.py:204: error: No overload variant of "__setitem__" of "list" matches argument types "Tensor", "int"
torch/functional.py:204: note: Possible overload variants:
torch/functional.py:204: note:     def __setitem__(self, int, int) -> None
torch/functional.py:204: note:     def __setitem__(self, slice, Iterable[int]) -> None
torch/functional.py:204: error: No overload variant of "__getitem__" of "list" matches argument type "Tensor"
torch/functional.py:204: note:     def __getitem__(self, int) -> int
torch/functional.py:204: note:     def __getitem__(self, slice) -> List[int]
torch/functional.py:207: error: "Tensor" has no attribute "copy_"
torch/functional.py:212: error: No overload variant of "__setitem__" of "list" matches argument types "Tensor", "int"
torch/functional.py:212: note: Possible overload variants:
torch/functional.py:212: note:     def __setitem__(self, int, int) -> None
torch/functional.py:212: note:     def __setitem__(self, slice, Iterable[int]) -> None
torch/functional.py:212: error: No overload variant of "__getitem__" of "list" matches argument type "Tensor"
torch/functional.py:212: note:     def __getitem__(self, int) -> int
torch/functional.py:212: note:     def __getitem__(self, slice) -> List[int]
torch/functional.py:215: error: Incompatible types in assignment (expression has type "None", variable has type "Tensor")
torch/functional.py:334: error: Name 'Optional' is not defined
torch/functional.py:334: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/functional.py:429: error: Argument 2 to "pad" has incompatible type "Tuple[int, int]"; expected "List[int]"
torch/functional.py:431: error: Module has no attribute "stft"
torch/functional.py:766: error: Module has no attribute "cdist"
torch/functional.py:768: error: Module has no attribute "cdist"
torch/functional.py:770: error: Module has no attribute "cdist"
torch/functional.py:775: error: Name 'Optional' is not defined
torch/functional.py:775: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/functional.py:780: error: Name 'Optional' is not defined
torch/functional.py:780: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/functional.py:780: error: Name 'number' is not defined
torch/functional.py:780: error: Name 'norm' already defined on line 775
torch/functional.py:785: error: Name 'Optional' is not defined
torch/functional.py:785: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/functional.py:785: error: Name 'number' is not defined
torch/functional.py:785: error: Name 'norm' already defined on line 775
torch/functional.py:790: error: Name 'Optional' is not defined
torch/functional.py:790: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/functional.py:790: error: Name 'norm' already defined on line 775
torch/functional.py:795: error: Name 'norm' already defined on line 775
torch/functional.py:960: error: Name 'Any' is not defined
torch/functional.py:960: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Any")
torch/functional.py:960: error: Name 'Tuple' is not defined
torch/functional.py:960: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/functional.py:1036: error: Argument 1 to "len" has incompatible type "int"; expected "Sized"
torch/functional.py:1041: error: Name 'Optional' is not defined
torch/functional.py:1041: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/functional.py:1041: error: Name 'Tuple' is not defined
torch/functional.py:1041: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/functional.py:1056: error: Name 'Optional' is not defined
torch/functional.py:1056: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/functional.py:1056: error: Name 'Tuple' is not defined
torch/functional.py:1056: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/distributions/von_mises.py:87: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/negative_binomial.py:25: error: Incompatible types in assignment (expression has type "_IntegerGreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/multivariate_normal.py:116: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/laplace.py:23: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/independent.py:34: error: Need type annotation for 'arg_constraints' (hint: "arg_constraints: Dict[<type>, <type>] = ...")
torch/distributions/cauchy.py:28: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/poisson.py:28: error: Incompatible types in assignment (expression has type "_IntegerGreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/one_hot_categorical.py:32: error: Incompatible types in assignment (expression has type "_Simplex", base class "Distribution" defined the type as "None")
torch/distributions/normal.py:27: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/lowrank_multivariate_normal.py:79: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/gamma.py:30: error: Incompatible types in assignment (expression has type "_GreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/exponential.py:23: error: Incompatible types in assignment (expression has type "_GreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/fishersnedecor.py:25: error: Incompatible types in assignment (expression has type "_GreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/dirichlet.py:44: error: Incompatible types in assignment (expression has type "_Simplex", base class "Distribution" defined the type as "None")
torch/nn/quantized/dynamic/modules/rnn.py:230: error: Incompatible types in assignment (expression has type "int", variable has type "Tensor")
torch/nn/quantized/dynamic/modules/rnn.py:232: error: Incompatible types in assignment (expression has type "int", variable has type "Tensor")
torch/nn/quantized/dynamic/modules/rnn.py:236: error: Incompatible return value type (got "Tuple[Any, Tensor, Any]", expected "Tuple[int, int, int]")
torch/nn/quantized/dynamic/modules/rnn.py:351: error: Incompatible types in assignment (expression has type "Type[LSTM]", base class "RNNBase" defined the type as "Type[RNNBase]")
torch/nn/quantized/dynamic/modules/rnn.py:381: error: Module has no attribute "quantized_lstm"
torch/nn/quantized/dynamic/modules/rnn.py:385: error: Module has no attribute "quantized_lstm"
torch/nn/quantized/dynamic/modules/rnn.py:414: error: Argument 1 to "forward_impl" of "LSTM" has incompatible type "PackedSequence"; expected "Tensor"
torch/nn/quantized/dynamic/modules/rnn.py:416: error: Incompatible types in assignment (expression has type "PackedSequence", variable has type "Tensor")
torch/nn/quantized/dynamic/modules/rnn.py:418: error: Incompatible return value type (got "Tuple[Tensor, Tuple[Tensor, Tensor]]", expected "Tuple[PackedSequence, Tuple[Tensor, Tensor]]")
torch/nn/quantized/dynamic/modules/rnn.py:420: error: Argument 1 of "permute_hidden" is incompatible with supertype "RNNBase"; supertype defines the argument type as "Tensor"
torch/nn/quantized/dynamic/modules/rnn.py:420: error: Return type "Tuple[Tensor, Tensor]" of "permute_hidden" incompatible with return type "Tensor" in supertype "RNNBase"
torch/nn/quantized/dynamic/modules/rnn.py:426: error: Argument 2 of "check_forward_args" is incompatible with supertype "RNNBase"; supertype defines the argument type as "Tensor"
torch/nn/intrinsic/qat/modules/conv_fused.py:232: error: Incompatible types in assignment (expression has type "Type[ConvBnReLU2d]", base class "ConvBn2d" defined the type as "Type[ConvBn2d]")
torch/distributions/beta.py:27: error: Incompatible types in assignment (expression has type "_Interval", base class "Distribution" defined the type as "None")
torch/distributions/geometric.py:31: error: Incompatible types in assignment (expression has type "_IntegerGreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/continuous_bernoulli.py:38: error: Incompatible types in assignment (expression has type "_Interval", base class "Distribution" defined the type as "None")
torch/distributions/bernoulli.py:30: error: Incompatible types in assignment (expression has type "_Boolean", base class "Distribution" defined the type as "None")
torch/quantization/fake_quantize.py:126: error: Module has no attribute "per_tensor_symmetric"
torch/quantization/fake_quantize.py:132: error: Module has no attribute "per_channel_symmetric"
torch/distributions/transformed_distribution.py:41: error: Need type annotation for 'arg_constraints' (hint: "arg_constraints: Dict[<type>, <type>] = ...")
torch/jit/__init__.py:1: error: Cannot find implementation or library stub for module named 'torch._C'
torch/jit/__init__.py:15: error: Module 'torch.utils' has no attribute 'set_module'
torch/jit/__init__.py:70: error: Name 'Attribute' already defined on line 68
torch/jit/__init__.py:213: error: On Python 3 '{}'.format(b'abc') produces "b'abc'"; use !r if this is a desired behavior
torch/jit/__init__.py:215: error: On Python 3 '{}'.format(b'abc') produces "b'abc'"; use !r if this is a desired behavior
torch/jit/__init__.py:1524: error: Unsupported dynamic base class "with_metaclass"
torch/jit/__init__.py:1869: error: Name 'ScriptModule' already defined on line 1524
torch/jit/__init__.py:1998: error: Need type annotation for '_jit_caching_layer'
torch/jit/__init__.py:1999: error: Need type annotation for '_jit_function_overload_caching'
torch/distributions/relaxed_categorical.py:34: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/relaxed_categorical.py:108: error: Incompatible types in assignment (expression has type "_Simplex", base class "Distribution" defined the type as "None")
torch/distributions/relaxed_bernoulli.py:31: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/relaxed_bernoulli.py:114: error: Incompatible types in assignment (expression has type "_Interval", base class "Distribution" defined the type as "None")
torch/distributions/logistic_normal.py:31: error: Incompatible types in assignment (expression has type "_Simplex", base class "Distribution" defined the type as "None")
torch/distributions/log_normal.py:26: error: Incompatible types in assignment (expression has type "_GreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/half_normal.py:27: error: Incompatible types in assignment (expression has type "_GreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/half_cauchy.py:28: error: Incompatible types in assignment (expression has type "_GreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/gumbel.py:28: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/nn/quantized/modules/conv.py:18: error: Module 'torch.nn.utils' has no attribute 'fuse_conv_bn_weights'
torch/nn/quantized/modules/conv.py:209: error: Name 'Optional' is not defined
torch/nn/quantized/modules/conv.py:209: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/nn/quantized/modules/conv.py:214: error: Module has no attribute "ops"
torch/nn/quantized/modules/conv.py:321: error: Name 'Optional' is not defined
torch/nn/quantized/modules/conv.py:321: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/nn/quantized/modules/conv.py:323: error: Module has no attribute "ops"
torch/nn/quantized/modules/conv.py:447: error: Name 'Optional' is not defined
torch/nn/quantized/modules/conv.py:447: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/nn/quantized/modules/conv.py:449: error: Module has no attribute "ops"
torch/nn/quantized/modules/conv.py:513: error: Name 'nn.modules.conv._ConvTransposeNd' is not defined
torch/nn/quantized/modules/conv.py:525: error: Name 'List' is not defined
torch/nn/quantized/modules/conv.py:525: note: Did you forget to import it from "typing"? (Suggestion: "from typing import List")
torch/nn/quantized/modules/conv.py:527: error: Name 'List' is not defined
torch/nn/quantized/modules/conv.py:527: note: Did you forget to import it from "typing"? (Suggestion: "from typing import List")
torch/nn/intrinsic/quantized/modules/conv_relu.py:8: error: Module 'torch.nn.utils' has no attribute 'fuse_conv_bn_weights'
torch/nn/intrinsic/quantized/modules/conv_relu.py:21: error: Incompatible types in assignment (expression has type "Type[ConvReLU2d]", base class "Conv2d" defined the type as "Type[Conv2d]")
torch/nn/intrinsic/quantized/modules/conv_relu.py:62: error: Incompatible types in assignment (expression has type "Type[ConvReLU3d]", base class "Conv3d" defined the type as "Type[Conv3d]")
torch/distributions/weibull.py:25: error: Incompatible types in assignment (expression has type "_GreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/kl.py:35: error: Need type annotation for '_KL_MEMOIZE' (hint: "_KL_MEMOIZE: Dict[<type>, <type>] = ...")
torch/distributions/studentT.py:27: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/mixture_same_family.py:48: error: Need type annotation for 'arg_constraints' (hint: "arg_constraints: Dict[<type>, <type>] = ...")
torch/distributions/__init__.py:158: error: Name 'transforms' is not defined
torch/onnx/utils.py:21: error: Cannot find implementation or library stub for module named 'torch._C'
torch/distributed/rendezvous.py:4: error: Cannot find implementation or library stub for module named 'urlparse'
torch/distributed/rendezvous.py:4: error: Name 'urlparse' already defined (possibly by an import)
torch/distributed/rendezvous.py:4: error: Name 'urlunparse' already defined (possibly by an import)
torch/distributed/rendezvous.py:9: error: Module 'torch.distributed' has no attribute 'FileStore'
torch/distributed/rendezvous.py:9: error: Module 'torch.distributed' has no attribute 'TCPStore'
torch/distributed/rendezvous.py:65: error: On Python 3 '{}'.format(b'abc') produces "b'abc'"; use !r if this is a desired behavior
torch/distributed/distributed_c10d.py:11: error: Module 'torch.distributed' has no attribute 'AllreduceOptions'; maybe "ReduceOptions" or "AllreduceCoalescedOptions"?
torch/distributed/distributed_c10d.py:11: error: Module 'torch.distributed' has no attribute 'AllreduceCoalescedOptions'; maybe "AllreduceOptions"?
torch/distributed/distributed_c10d.py:11: error: Module 'torch.distributed' has no attribute 'AllToAllOptions'
torch/distributed/distributed_c10d.py:11: error: Module 'torch.distributed' has no attribute 'BroadcastOptions'
torch/distributed/distributed_c10d.py:11: error: Module 'torch.distributed' has no attribute 'GatherOptions'; maybe "ScatterOptions"?
torch/distributed/distributed_c10d.py:11: error: Module 'torch.distributed' has no attribute 'ReduceOptions'; maybe "AllreduceOptions", "ReduceScatterOptions", or "ReduceOp"?
torch/distributed/distributed_c10d.py:11: error: Module 'torch.distributed' has no attribute 'ReduceScatterOptions'; maybe "ScatterOptions" or "ReduceOptions"?
torch/distributed/distributed_c10d.py:11: error: Module 'torch.distributed' has no attribute 'ScatterOptions'; maybe "ReduceScatterOptions" or
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36584

Reviewed By: seemethere, ailzhang

Differential Revision: D21155985

Pulled By: ezyang

fbshipit-source-id: f628d4293992576207167e7c417998fad15898d1
2020-04-22 14:17:08 -07:00
Wojciech Baranowski
69e3ee2d5f DataLoader: properly diagnose exceeding file descriptor limit (#34768)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/973

Common failure scenario:
* DataLoader creates workers and communicates with them through SHMs
* Workers send back through an AF_UNIX socket file descriptors to SHMs containing data
* The limit of open files gets fully used
* A FD gets stripped from a socket message coming back from a worker, without the worker knowing this.
* This causes a `RuntimeError: received 0 items of ancdata` in the standard `multiprocessing` package
* The exception is not handled by PyTorch and so is presented to the users.

After this change the user will see

```
Traceback (most recent call last):
  File "/home/wbaranowski/git/Quansight/pytorch/torch/utils/data/dataloader.py", line 761, in _try_get_data
    data = self._data_queue.get(timeout=timeout)
  File "/home/wbaranowski/miniconda3/envs/pytorch-cuda-dev/lib/python3.6/multiprocessing/queues.py", line 113, in get
    return _ForkingPickler.loads(res)
  File "/home/wbaranowski/git/Quansight/pytorch/torch/multiprocessing/reductions.py", line 294, in rebuild_storage_fd
    fd = df.detach()
  File "/home/wbaranowski/miniconda3/envs/pytorch-cuda-dev/lib/python3.6/multiprocessing/resource_sharer.py", line 58, in detach
    return reduction.recv_handle(conn)
  File "/home/wbaranowski/miniconda3/envs/pytorch-cuda-dev/lib/python3.6/multiprocessing/reduction.py", line 184, in recv_handle
    return recvfds(s, 1)[0]
  File "/home/wbaranowski/miniconda3/envs/pytorch-cuda-dev/lib/python3.6/multiprocessing/reduction.py", line 162, in recvfds
    len(ancdata))
RuntimeError: received 0 items of ancdata

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/home/wbaranowski/git/Quansight/pytorch/torch/utils/data/dataloader.py", line 787, in _try_get_data
    fs = [tempfile.NamedTemporaryFile() for i in range(10)]
  File "/home/wbaranowski/git/Quansight/pytorch/torch/utils/data/dataloader.py", line 787, in <listcomp>
    fs = [tempfile.NamedTemporaryFile() for i in range(10)]
  File "/home/wbaranowski/miniconda3/envs/pytorch-cuda-dev/lib/python3.6/tempfile.py", line 551, in NamedTemporaryFile
    (fd, name) = _mkstemp_inner(dir, prefix, suffix, flags, output_type)
  File "/home/wbaranowski/miniconda3/envs/pytorch-cuda-dev/lib/python3.6/tempfile.py", line 262, in _mkstemp_inner
    fd = _os.open(file, flags, 0o600)
OSError: [Errno 24] Too many open files: '/tmp/tmpnx_f6v_f'

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "test_shm_leak.py", line 56, in <module>
    worker_init_fn=worker_init_fn
  File "/home/wbaranowski/git/Quansight/pytorch/torch/utils/data/dataloader.py", line 345, in __next__
    data = self._next_data()
  File "/home/wbaranowski/git/Quansight/pytorch/torch/utils/data/dataloader.py", line 861, in _next_data
    idx, data = self._get_data()
  File "/home/wbaranowski/git/Quansight/pytorch/torch/utils/data/dataloader.py", line 828, in _get_data
    success, data = self._try_get_data()
  File "/home/wbaranowski/git/Quansight/pytorch/torch/utils/data/dataloader.py", line 791, in _try_get_data
    "Too many open files. Communication with the"
RuntimeError: Too many open files. Communication with the workers is no longer possible. Please increase the limit using `ulimit -n` in the shell or change the sharing strategy by calling `torch.multiprocessing.set_sharing_strategy('file_system')` at the beginning of your code
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34768

Differential Revision: D20538053

Pulled By: ezyang

fbshipit-source-id: be4425cf2fa02aff61619b2b829c153cb1a867cb
2020-04-14 07:10:57 -07:00
Hong Xu
817e4f9ef1 Correct a ValueError in dataloader to TypeError (#36244)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/36244

Differential Revision: D20963949

Pulled By: ezyang

fbshipit-source-id: 8c6aa4831021788052269e7aa8282d11eba4e085
2020-04-10 09:03:58 -07:00
Mathis Chenuet
17a01c7c7b feature: deterministic random_split (#34043)
Summary:
## 🚀 Feature
Option to provide a seed (random_state) for random_split() like the sklearn API https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html.

## Motivation
Useful for deterministic sampling & reproducible data generation (easily, without affecting the PRNG for other uses).
See https://github.com/pytorch/pytorch/issues/32467
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34043

Differential Revision: D20605678

Pulled By: ezyang

fbshipit-source-id: 12b10bf72cd8a0d4264ae4d326064f806945d011
2020-03-26 08:02:39 -07:00
Tongzhou Wang
4ef854b4b4 Fix potential hang when exiting main process (#33721)
Summary:
The following script reproduces the hang
```py
import multiprocessing, logging
logger = multiprocessing.log_to_stderr()
logger.setLevel(multiprocessing.SUBDEBUG)

import torch

class Dataset:
    def __len__(self):
        return 23425

    def __getitem__(self, idx):
        return torch.randn(3, 128, 128), idx % 100

ds = Dataset()
trdl = torch.utils.data.DataLoader(ds, batch_size=64, num_workers=300, pin_memory=True, shuffle=True)

for e in range(1000):
    for ii, (x, y) in enumerate(trdl):
        print(f'tr {e: 5d} {ii: 5d} avg y={y.mean(dtype=torch.double).item()}')
        if ii % 2 == 0:
            print("="*200 + "BEFORE ERROR" + "="*200)
            1/0
```

The process will hang at joining the putting thread of `data_queue` in **main process**. The root cause is that too many things are put in the queue from the **worker processes**, and the `put` at 062ac6b472/torch/utils/data/dataloader.py (L928) is blocked at background thread. The `pin_memory_thread` exits from the set `pin_memory_thread_done_event`, without getting the `(None, None)`. Hence, the main process needs the same treatment as the workers did at
062ac6b472/torch/utils/data/_utils/worker.py (L198) .

After the patch, the script finishes correctly.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33721

Differential Revision: D20089209

Pulled By: ezyang

fbshipit-source-id: e73fbfdd7631afe1ce5e1edd05dbdeb7b85ba961
2020-02-25 07:04:41 -08:00
Peter Bell
32c93099c4 Add typing info for data members of utils.data.sampler classes (#33679)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/33490
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33679

Differential Revision: D20063099

Pulled By: ngimel

fbshipit-source-id: 1bbf71a65408d117019ab38d7d095cfd337f5d1e
2020-02-24 11:29:59 -08:00
DuckSoft
6a275b696e adding IterableDataset to utils.data.__init__ (#33543)
Summary:
this shall fix issue https://github.com/pytorch/pytorch/issues/27820 again
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33543

Differential Revision: D20002446

Pulled By: vincentqb

fbshipit-source-id: 7563a56fd6238efe8ea5626b02ba5e8fcda0780e
2020-02-24 10:09:38 -08:00
vfdev
c6e0360812 Minor change of docstring example of WeightedRandomSampler (#30846)
Summary:
Previous example
```python
>>> list(WeightedRandomSampler([0.1, 0.9, 0.4, 0.7, 3.0, 0.6], 5, replacement=True))
        [0, 0, 0, 1, 0]
```
may seem misleading according to provided weights.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30846

Differential Revision: D19697367

Pulled By: ezyang

fbshipit-source-id: 3d6e3cd0cecb5272a368707ba35bc7acdbd82c30
2020-02-12 07:46:39 -08:00
Ralf Gommers
6305e4a88f Add warning and example for seeding to DistributedSampler (#32951)
Summary:
Closes gh-31771

Also note that the `epoch` attribute is *only* used as a manual seed in each iteration (so it could easily be changed/renamed).  Seeding consecutive iterations with `[0, 1, 2, ...]` is low-entropy, however in practice it probably doesn't matter when using the sampler in combination with a dataloader (because there won't be enough data nor epochs to run into statistical issues
due to low-entropy seeding). So leaving that as is.

Rendered docstring:

<img width="534" alt="image" src="https://user-images.githubusercontent.com/98330/73701250-35134100-46e9-11ea-97b8-3baeb60fcb37.png">
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32951

Differential Revision: D19729333

Pulled By: ezyang

fbshipit-source-id: 3ddf90a3828b8bbae88aa2195a5d0b7d8ee1b066
2020-02-04 14:36:59 -08:00
Santiago Castro
6996f8d880 Add missing default_collate in dataloader.pyi
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/28935

Differential Revision: D19698781

Pulled By: ezyang

fbshipit-source-id: abdd735c98656ed16cd326529441d1fcec2ace3e
2020-02-03 14:01:49 -08:00
Santiago Castro
167a892e99 Add missing shuffle attribute to DistributedSampler typing file
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/28763

Differential Revision: D19698808

Pulled By: ezyang

fbshipit-source-id: 7820acd7b0715ebf1d9ae954dca0058b6759075e
2020-02-03 12:02:58 -08:00
Brian Wignall
f326045b37 Fix typos, via a Levenshtein-type corrector (#31523)
Summary:
Should be non-semantic.

Uses https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines to find likely typos, with https://github.com/bwignall/typochecker to help automate the checking.

Uses an updated version of the tool used in https://github.com/pytorch/pytorch/pull/30606 .
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31523

Differential Revision: D19216749

Pulled By: mrshenli

fbshipit-source-id: 7fd489cb9a77cd7e4950c1046f925d57524960ea
2020-01-17 16:03:19 -08:00
Tongzhou Wang
c37de32b23 Enable len(dataloader) for iterable dataset (#23587)
Summary:
Copy-paste comment from code for reasoning:

```
            # NOTE [ IterableDataset and __len__ ]
            #
            # For `IterableDataset`, `__len__` could be inaccurate when one naively
            # does multi-processing data loading, since the samples will be duplicated.
            # However, no real use case should be actually using that behavior, so
            # it should count as a user error. We should generally trust user
            # code to do the proper thing (e.g., configure each replica differently
            # in `__iter__`), and give us the correct `__len__` if they choose to
            # implement it (this will still throw if the dataset does not implement
            # a `__len__`).
            #
            # To provide a further warning, we track if `__len__` was called on the
            # `DataLoader`, save the returned value in `self._len_called`, and warn
            # if the iterator ends up yielding more than this number of samples.
```

Fixes https://github.com/pytorch/pytorch/issues/30184
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23587

Differential Revision: D18852625

Pulled By: ailzhang

fbshipit-source-id: aea8d4d70c7f21aaa69b35908a6f43026493d826
2019-12-06 15:38:05 -08:00
Donald Pinckney
00bd9eae33 Fix typo in Dataset and IterableDataset docs (#28960)
Summary:
Replaced "overrite" with "overwrite".
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28960

Differential Revision: D18246411

Pulled By: soumith

fbshipit-source-id: dc0979a44b7c621a316823061760e0358c227727
2019-10-31 11:34:52 -07:00
henribru
440b192078 Type hints: Return Iterator instead of Iterable from __iter__ (#27445)
Summary:
`__iter__` methods are supposed to return iterators (https://docs.python.org/3/reference/datamodel.html#object.__iter__), but some of them are typed to return iterables, which is too general. This results in error messages such as `Iterable[Module[Any]]" has no attribute "__next__"` from Mypy. Technically this should also have caused a type error [here](8f7020bbdb/torch/nn/modules/container.py (L115)), but due to a bug in Mypy type checking isn't working correctly in untyped methods (this will be fixed in the next release though: https://github.com/python/mypy/pull/7530).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27445

Reviewed By: lerks

Differential Revision: D18113966

Pulled By: fmassa

fbshipit-source-id: c6261ac866f86df4328e6d2fdfca0625aa2d2492
2019-10-27 04:40:55 -07:00
なるみ
d83389d327 Ignore F401 in all __init__.py without putting noqa (#25823)
Summary:
By adding `per-file-ignores = __init__.py: F401` into `.flake8` with `flake8>=3.7`, we can ignore F410 in all `__init__.py` without putting `# noqa: F401` line by line.

http://flake8.pycqa.org/en/latest/user/options.html?highlight=per-file-ignores#cmdoption-flake8-per-file-ignores
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25823

Differential Revision: D17252182

Pulled By: soumith

fbshipit-source-id: 87b174075b79e4078953a7521bd1a8f82405646b
2019-10-23 15:28:13 -07:00
DuckSoft
498ca083a6 adding IterableDataset to dataset.pyi (#27966)
Summary:
this shall fix https://github.com/pytorch/pytorch/issues/27820
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27966

Differential Revision: D17929633

Pulled By: ezyang

fbshipit-source-id: ff3e0fb7f998b0771183288200c0859eb5f381dd
2019-10-15 08:41:59 -07:00
Michael Steininger
4bcedb6670 Mark sampler and batch_sampler arguments as optional in the DataLoader interface (#27821)
Summary:
Changelog:

- DataLoader argument `sampler` is now of type `Optional[Sampler[int]]`instead of `Sampler[int]`
- DataLoader argument `batch_sampler` is now of type `Optional[Sampler[Sequence[int]]]` instead of `Sampler[Sequence[int]]`

Fixes https://github.com/pytorch/pytorch/issues/27737
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27821

Differential Revision: D17906623

Pulled By: ezyang

fbshipit-source-id: 088cacbb7e9f7988995f40b71adc3e719815f5ad
2019-10-14 06:57:27 -07:00