Summary:
Only under static axes does opset 9 supports no-op squeeze when dim is not 1.
Updating the test case where it was setting dynamic axes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45369
Reviewed By: anjali411
Differential Revision: D24280180
Pulled By: bzinodev
fbshipit-source-id: d7cda88ab338a1c41a68052831dcebe739a3843c
Summary:
Even when dim is None, there are cases when flatten can be exported.
Also enable test_densenet in scripting mode
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45632
Reviewed By: VitalyFedyunin
Differential Revision: D24116994
Pulled By: bzinodev
fbshipit-source-id: 76da6c073ddf79bba64397fd56b592de850034c4
Summary:
* Support propagating `dim_param` in ONNX by encoding as `ShapeSymbol` in `SymbolicShape` of outputs. If export is called with `dynamic_axes` provided, shape inference will start with these axes set as dynamic.
* Add new test file `test_pytorch_onnx_shape_inference.py`, reusing all test cases from `test_pytorch_onnx_onnxruntime.py`, but focus on validating shape for all nodes in graph. Currently this is not enabled in the CI, since there are still quite some existing issues and corner cases to fix. The test is default to run only at opset 12.
* Bug fixes, such as div, _len, and peephole.cpp passes for PackPadded, and LogSoftmaxCrossEntropy.
* This PR depends on existing PR such as 44332.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44920
Reviewed By: eellison
Differential Revision: D23958398
Pulled By: bzinodev
fbshipit-source-id: 00479d9bd19c867d526769a15ba97ec16d56e51d
Summary:
Export of embedding bag with dynamic list of offsets.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44693
Reviewed By: malfet
Differential Revision: D23831980
Pulled By: bzinodev
fbshipit-source-id: 3eaff1a0f20d1bcfb8039e518d78c491be381e1a
Summary:
Export of view op with dynamic input shape is broken when using tensors with a 0-dim.
This fix removes symbolic use of static input size to fix this issue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43558
Reviewed By: ailzhang
Differential Revision: D23965090
Pulled By: bzinodev
fbshipit-source-id: 628e9d7ee5d53375f25052340ca6feabf7ba7c53
Summary:
Fix a couple of issues with scripting inplace indexing in prepare_inplace_ops_for_onnx pass.
1- Tracing index copy (such as cases lik x[1:3] = data) already applies broadcasting on rhs if needed. The broadcasting node (aten::expand) is missing in scripting cases.
2- Inplace indexing with ellipsis (aten::copy_) is replaced with aten::index_put and then handled with slice+select in this pass.
Support for negative indices for this op added.
Shape inference is also enabled for scripting tests using new JIT API.
A few more tests are enabled for scripting.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44351
Reviewed By: ezyang
Differential Revision: D23880267
Pulled By: bzinodev
fbshipit-source-id: 78b33444633eb7ae0fbabc7415e3b16001f5207f
Summary:
in ONNX NegativeLogLikelihoodLoss specification, ignore_index is optional without default value.
therefore, when convert nll op to ONNX, we need to set ignore_index attribute even if it is not specified (e.g. ignore_index=-100).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44816
Reviewed By: ezyang
Differential Revision: D23880354
Pulled By: bzinodev
fbshipit-source-id: d0bdd58d0a4507ed9ce37133e68533fe6d1bdf2b
Summary:
Moved description of tool and changes in function name
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44124
Reviewed By: albanD
Differential Revision: D23674618
Pulled By: bzinodev
fbshipit-source-id: 5db0bb14fc106fc96358b1e0590f08e975388c6d
Summary:
* Support sequence type (de)serialization, enables onnx shape inference on sequence nodes.
* Fix shape inference with block input/output: e.g. Loop and If nodes.
* Fix bugs in symbolic discovered by coverage of onnx shape inference.
* Improve debuggability: added more jit logs. For simplicity, the default log level, when jit log is enabled, will not dump ir graphs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43929
Reviewed By: albanD
Differential Revision: D23674604
Pulled By: bzinodev
fbshipit-source-id: ab6aacb16d0e3b9a4708845bce27c6d65e567ba7
Summary:
Follow up to https://github.com/pytorch/pytorch/pull/36404
Adding prim::device and prim::dtype to list of skipped peepholes when we run inlining. In the long term another fix may not be to encode shape / dtype info on the traced graph, because it is not guaranteed to be correct. This is blocked by ONNX currently.
Partial fix for https://github.com/pytorch/pytorch/issues/43134
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43363
Reviewed By: glaringlee
Differential Revision: D23383987
Pulled By: eellison
fbshipit-source-id: 2e9c5160d39d690046bd9904be979d58af8d3a20
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43025
- Use new overloads that better reflect the arguments to interpolate.
- More uniform interface for upsample ops allows simplifying the Python code.
- Also reorder overloads in native_functions.yaml to give them priority.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37177
ghstack-source-id: 106938111
Test Plan:
test_nn has pretty good coverage.
Relying on CI for ONNX, etc.
Didn't test FC because this change is *not* forward compatible.
To ensure backwards compatibility, I ran this code before this change
```python
def test_func(arg):
interp = torch.nn.functional.interpolate
with_size = interp(arg, size=(16,16))
with_scale = interp(arg, scale_factor=[2.1, 2.2], recompute_scale_factor=False)
with_compute = interp(arg, scale_factor=[2.1, 2.2])
return (with_size, with_scale, with_compute)
traced_func = torch.jit.trace(test_func, torch.randn(1,1,1,1))
sample = torch.randn(1, 3, 7, 7)
output = traced_func(sample)
assert not torch.allclose(output[1], output[2])
torch.jit.save(traced_func, "model.pt")
torch.save((sample, output), "data.pt")
```
then this code after this change
```python
model = torch.jit.load("model.pt")
sample, golden = torch.load("data.pt")
result = model(sample)
for r, g in zip(result, golden):
assert torch.allclose(r, g)
```
Reviewed By: AshkanAliabadi
Differential Revision: D21209991
fbshipit-source-id: 5b2ebb7c3ed76947361fe532d1dbdd6faa3544c8
Summary:
Update repeat op so that the inputs to sizes argument can a mixture of dynamic and constant inputs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43430
Reviewed By: houseroad
Differential Revision: D23494257
Pulled By: bzinodev
fbshipit-source-id: 90c5e90e4f73e98f3a9d5c8772850e72cecdf0d4
Summary:
Duplicate of https://github.com/pytorch/pytorch/issues/41413
This PR initiates the process of updating the torchsciprt backend interface used by ONNX exporter.
Replace jit lower graph pass by freeze module pass
Enable ScriptModule tests for ONNX operator tests (ORT backend) and model tests by default.
Replace jit remove_inplace_ops pass with remove_mutation and consolidation all passes for handling inplace ops.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43791
Reviewed By: houseroad
Differential Revision: D23421872
Pulled By: bzinodev
fbshipit-source-id: a98710c45ee905748ec58385e2a232de2486331b
Summary:
During scripting, combination of shape (or size()) and slice (e.g x.shape[2:]) produces following error:
slice() missing 1 required positional argument: 'step'
This happens because aten::slice has 2 signatures:
- aten::slice(Tensor self, int dim, int start, int end, int step) -> Tensor
- aten::slice(t[] l, int start, int end, int step) -> t[]
and when a list is passed instead of tensor the 2nd of the two slice signatures is called, and since it has 4 instead of 5 arguments it produces the above exception.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42935
Reviewed By: houseroad
Differential Revision: D23398435
Pulled By: bzinodev
fbshipit-source-id: 4151a8f878c520cea199b265973fb476b17801fe
Summary:
It is often that the conversion from torch operator to onnx operator requires input rank/dtype/shape to be known. Previously, the conversion depends on tracer to provide these info, leaving a gap in conversion of scripted modules.
We are extending the export with support from onnx shape inference. If enabled, onnx shape inference will be called whenever an onnx node is created. This is the first PR introducing the initial look of the feature. More and more cases will be supported following this PR.
* Added pass to run onnx shape inference on a given node. The node has to have namespace `onnx`.
* Moved helper functions from `export.cpp` to a common place for re-use.
* This feature is currently experimental, and can be turned on through flag `onnx_shape_inference` in internal api `torch.onnx._export`.
* Currently skipping ONNX Sequence ops, If/Loop and ConstantOfShape due to limitations. Support will be added in the future.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40628
Reviewed By: mrshenli
Differential Revision: D22709746
Pulled By: bzinodev
fbshipit-source-id: b52aeeae00667e66e0b0c1144022f7af9a8b2948
Summary:
`torch.scatter` allows `src` to be of different type when `src` is a scalar. This requires a an explicit cast op to be inserted in the ONNX graph because ONNX `ScatterElements` does not allow different types. This PR updates the export of `torch.scatter` with this logic.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43440
Reviewed By: hl475
Differential Revision: D23352317
Pulled By: houseroad
fbshipit-source-id: c9eeddeebb67fc3c40ad01def134799ef2b4dea6
Summary:
Optimize exported graph to export slice nodes for aten::split when the number of split outputs are fixed. Previously under some cases these are exported as onnx::SplitToSequence, which is dynamic in tensor output count.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42744
Reviewed By: houseroad
Differential Revision: D23172465
Pulled By: bzinodev
fbshipit-source-id: 11e432b4ac1351f17e48356c16dc46f877fdf7da
Summary:
The ONNX spec for the Squeeze operator:
> Remove single-dimensional entries from the shape of a tensor. Takes a parameter axes with a list of axes to squeeze. If axes is not provided, all the single dimensions will be removed from the shape. If an axis is selected with shape entry not equal to one, an error is raised.
Currently, as explained in issue https://github.com/pytorch/pytorch/issues/36796, it is possible to export such a model to ONNX, and this results in an exception from ONNX runtime.
Fixes https://github.com/pytorch/pytorch/issues/36796.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38476
Reviewed By: hl475
Differential Revision: D22158024
Pulled By: houseroad
fbshipit-source-id: bed625f3c626eabcbfb2ea83ec2f992963defa19
Summary:
`torch.scatter` supports two overloads – one where `src` input tensor is same size as the `index` tensor input, and second, where `src` is a scalar. Currrently, ONNX exporter only supports the first overload. This PR adds export support for the second overload of `torch.scatter`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42765
Reviewed By: hl475
Differential Revision: D23025189
Pulled By: houseroad
fbshipit-source-id: 5c2a3f3ce3b2d69661a227df8a8e0ed7c1858dbf
Summary:
in `_jit_pass_onnx`, symbolic functions are called for each node for conversion. However, there are nodes that cannot be converted without additional context. For example, the number of outputs from split (and whether it is static or dynamic) is unknown until the point where it is unpacked by listUnpack node. This pass does a preprocess, and prepares the nodes such that enough context can be received by the symbolic function.
* After preprocessing, `_jit_pass_onnx` should have enough context to produce valid ONNX nodes, instead of half baked nodes that replies on fixes from later postpasses.
* `_jit_pass_onnx_peephole` should be a pass that does ONNX specific optimizations instead of ONNX specific fixes.
* Producing more valid ONNX nodes in `_jit_pass_onnx` enables better utilization of the ONNX shape inference https://github.com/pytorch/pytorch/issues/40628.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41832
Reviewed By: ZolotukhinM
Differential Revision: D22968334
Pulled By: bzinodev
fbshipit-source-id: 8226f03c5b29968e8197d242ca8e620c6e1d42a5
Summary:
`torch.where` supports `ByteTensor` and `BoolTensor` types for the first input argument (`condition` predicate). Currently, ONNX exporter assumes that the first argument is `BoolTensor`. This PR updates the export for `torch.where` to correctly support export when first argument is a `ByteTensor`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42264
Reviewed By: houseroad
Differential Revision: D22968473
Pulled By: bzinodev
fbshipit-source-id: 7306388c8446ef3faeb86dc89d72d1f72c1c2314
Summary:
* move both under new file `fixup_onnx_controlflow`
* move the fixup to where the ONNX loop/if node is created, as oppose to running the fixup as postpass. This will help with enable onnx shape inference later.
* move `fuseSequenceSplitConcat` to `Peephole`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40943
Reviewed By: mrshenli
Differential Revision: D22709999
Pulled By: bzinodev
fbshipit-source-id: 51d316991d25dc4bb4047a6bb46ad1e2401d3d2d
Summary:
`as_strided` creates a view of an existing tensor with specified `sizes`, `strides`, and `storage_offsets`. This PR supports the export of `as_strided` with static argument `strides`. The following scenarios will not be supported:
* Calling on tensor of dynamic shape, i.e. the tensor shape differs between model runs and different model inputs.
* In-place operations, i.e. updates to the original tensor that are expected to reflect in the `as_strided` output, and vice versa.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41569
Reviewed By: VitalyFedyunin
Differential Revision: D22845295
Pulled By: bzinodev
fbshipit-source-id: 7d1aa88a810e6728688491478dbf029f17ae7201
Summary:
This PR initiates the process of updating the torchsciprt backend interface used by ONNX exporter.
- Replace jit lower graph pass by freeze module pass
- Enable ScriptModule tests for ONNX operator tests (ORT backend) and model tests by default.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41413
Reviewed By: VitalyFedyunin
Differential Revision: D22845258
Pulled By: bzinodev
fbshipit-source-id: d57fd4086f27bd0c3bf5f70af7fd0daa39a2814a