Commit Graph

631 Commits

Author SHA1 Message Date
Meghan Lele
4f4e3a0f15 [JIT] Replace uses of "whitelist" in jit/_script.py (#41458)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41458

**Test Plan**
Continuous integration.

**Fixes**
This commit partially fixes #41443.

Test Plan: Imported from OSS

Reviewed By: suo

Differential Revision: D22544273

Pulled By: SplitInfinity

fbshipit-source-id: 8148e5338f90a5ef19177cf68bf36b56926d5a6c
2020-07-17 11:33:10 -07:00
Meghan Lele
bf0d0900a7 [JIT] Replace uses of "blacklist" in jit/_recursive.py (#41457)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41457

**Test Plan**
Continuous integration.

**Fixes**
This commit partially addresses #41443.

Test Plan: Imported from OSS

Reviewed By: suo

Differential Revision: D22544274

Pulled By: SplitInfinity

fbshipit-source-id: ee74860c48d85d819d46c8b8848960e77bb5013e
2020-07-17 11:33:07 -07:00
Will Constable
cb9029df9d Assert valid inner type for OptionalType creation (#41509)
Summary:
Assert in OptionalType::create for valid TypePtr to catch all uses, as well as in python resolver to propagate slightly more helpful error message.

Closes https://github.com/pytorch/pytorch/issues/40713.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41509

Reviewed By: suo

Differential Revision: D22563710

Pulled By: wconstab

fbshipit-source-id: ee6314b1694a55c1ba7c8251260ea120be148b17
2020-07-17 07:22:41 -07:00
Yuxin Wu
488ee3790e Support @torch.jit.unused on a @torch.no_grad decorated function (#41496)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41496

use the wrapped function (instead of the wrapper) to obtain argument names

Test Plan:
```
buck test mode/dev-nosan //caffe2/test:jit -- 'test_unused_decorator \(test_jit\.TestScript\)'
```

Before:
```
> Traceback (most recent call last):
>   File "/data/users/yuxinwu/fbsource2/fbcode/buck-out/dev/gen/caffe2/test/jit#binary,link-tree/test_jit.py", line 3014, in test_unused_decorator
>     torch.jit.script(MyMod())
>   File "/data/users/yuxinwu/fbsource2/fbcode/buck-out/dev/gen/caffe2/test/jit#binary,link-tree/torch/jit/_script.py", line 888, in script
>     obj, torch.jit._recursive.infer_methods_to_compile
>   File "/data/users/yuxinwu/fbsource2/fbcode/buck-out/dev/gen/caffe2/test/jit#binary,link-tree/torch/jit/_recursive.py", line 317, in create_script_module
>     return create_script_module_impl(nn_module, concrete_type, stubs_fn)
>   File "/data/users/yuxinwu/fbsource2/fbcode/buck-out/dev/gen/caffe2/test/jit#binary,link-tree/torch/jit/_recursive.py", line 376, in create_script_module_impl
>     create_methods_from_stubs(concrete_type, stubs)
>   File "/data/users/yuxinwu/fbsource2/fbcode/buck-out/dev/gen/caffe2/test/jit#binary,link-tree/torch/jit/_recursive.py", line 292, in create_methods_from_stubs
>     concrete_type._create_methods(defs, rcbs, defaults)
> RuntimeError:
> Non-static method does not have a self argument:
>   File "/data/users/yuxinwu/fbsource2/fbcode/buck-out/dev/gen/caffe2/test/jit#binary,link-tree/test_jit.py", line 3012
>             def forward(self, x):
>                 return self.fn(x)
>                        ~~~~~~~ <--- HERE
>
```

Reviewed By: eellison

Differential Revision: D22554479

fbshipit-source-id: 03e432ea92ed973cc57ff044da80ae7a36f6af4c
2020-07-15 16:54:43 -07:00
Michael Suo
ca1b8ebbcb move misc implementation out of jit/__init__.py (#41154)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/41154

Test Plan: Imported from OSS

Reviewed By: ailzhang

Differential Revision: D22445213

Pulled By: suo

fbshipit-source-id: 200545715c5ef13beb1437f49e01efb21498ddb7
2020-07-13 16:59:55 -07:00
蔡舒起
6392713584 add spaces in .md annotation for python indent (#41260)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/41260

Reviewed By: ezyang

Differential Revision: D22504634

Pulled By: ailzhang

fbshipit-source-id: 9d2d605dc19b07896ee4b1811fcd34d4dcb9b0c7
2020-07-13 15:11:46 -07:00
Jannik Bamberger
1c098ae339 Fix arg type annotations in jit.trace and onnx.export (#41093)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/40350

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41093

Differential Revision: D22477950

Pulled By: malfet

fbshipit-source-id: f1141c129b6d9efb373d22291b441df86c529ddd
2020-07-10 20:07:05 -07:00
Michael Suo
62cee0001e Move async + serialization implementation out of 'jit/__init__.py' (#41018)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41018

See https://github.com/pytorch/pytorch/pull/40807 for context.

Test Plan: Imported from OSS

Reviewed By: ailzhang

Differential Revision: D22393869

Pulled By: suo

fbshipit-source-id: a71cc571a423ccb81cd148444dc2a18d2ee43464
2020-07-09 10:10:01 -07:00
Dmytro Dzhulgakov
8e2841781e [easy] Use torch.typename in JIT error messages (#41024)
Summary:
Noticed while trying to script one of the models which happened to have numpy values as constants. Lacking the numpy prefix in the error message was quite confusing.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41024

Differential Revision: D22426399

Pulled By: dzhulgakov

fbshipit-source-id: 06158b75355fac6871e4861f82fc637c2420e370
2020-07-08 21:49:37 -07:00
Michael Suo
c93e96fbd9 [jit] move script-related implementation out of torch/jit/__init__.py (#40902)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40902

See the bottom of this stack for context.

Test Plan: Imported from OSS

Reviewed By: eellison

Differential Revision: D22360210

Pulled By: suo

fbshipit-source-id: 4275127173a36982ce9ad357aa344435b98e1faf
2020-07-08 11:38:34 -07:00
mattip
75155df8b4 Doc warnings (#41068)
Summary:
solves most of gh-38011 in the framework of solving gh-32703.

These should only be formatting fixes, I did not try to fix grammer and syntax.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41068

Differential Revision: D22411919

Pulled By: zou3519

fbshipit-source-id: 25780316b6da2cfb4028ea8a6f649bb18b746440
2020-07-07 11:43:21 -07:00
Michael Suo
300a3aaaad [jit] move private implementation out of jit/__init__.py (#40807)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40807

We pack a lot of logic into `jit/__init__.py`, making it unclear to
developers and users which parts of our API are public vs. internal. This
is one in a series of PRs intended to pull implementation out into
separate files, and leave `__init__.py` as a place to register the
public API.

This PR moves all the tracing-related stuff out, and fixes other spots up
as necessary. Followups will move other core APIs out.

The desired end-state is that we conform to the relevant rules in [PEP 8](https://www.python.org/dev/peps/pep-0008/#public-and-internal-interfaces). In particular:
- Internal implementation goes in modules prefixed by `_`.
- `__init__.py` exposes a public API from these private modules, and nothing more.
- We set `__all__` appropriately to declare our public API.
- All use of JIT-internal functionality outside the JIT are removed (in particular, ONNX is relying on a number internal APIs). Since they will need to be imported explicitly, it will be easier to catch new uses of internal APIs in review.

Test Plan: Imported from OSS

Reviewed By: eellison

Differential Revision: D22320645

Pulled By: suo

fbshipit-source-id: 0720ea9976240e09837d76695207e89afcc58270
2020-07-05 22:01:11 -07:00
Will Constable
8ecd4f36aa fix __len__, __contains__, getitem inherited from interface class derived from nn container (closes #40603) (#40789)
Summary:
Define static script implementation of __len__ and __contains__ on any subclass derived from a type such as ModuleList, Sequential, or ModuleDict.  Implement getitem for classes derived from ModuleDict.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40789

Reviewed By: eellison

Differential Revision: D22325159

Pulled By: wconstab

fbshipit-source-id: fc1562c29640fe800e13b5a1dd48e595c2c7239b
2020-07-04 15:45:18 -07:00
Wanchao Liang
3e09268c0a [jit] allow dict to be mixed between tracing and scripting (#39601)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/39601

Test Plan: Imported from OSS

Reviewed By: jamesr66a

Differential Revision: D22202689

Pulled By: wanchaol

fbshipit-source-id: 5271eb3d8fdcda3d730a085aa555b43c35d14876
2020-06-24 16:14:13 -07:00
Mike Ruberry
e66445878d Adds dynamic versioning pattern (#40279)
Summary:
BC NOTE:

This change makes it so modules saved with torch.jit.save in PyTorch 1.6 can be loaded by previous versions of PyTorch unless they use torch.div or (soon) torch.full. It also lets tensors saved using torch.save be loaded by previous versions. So this is the opposite of BC-breaking, but I'm using that label to highlight this issue since we don't have a "BC-improving" label.

PR NOTE:
When an operator's semantics change in PyTorch we want to do two things:

1) Preserve the semantics of older serialized Torchscript programs that use the operator
2) Ensure the new semantics are respected

Historically, this meant writing a Versioned Symbol that would remap older versions of the operator into current PyTorch code (1), and bumping the produced file format version (2). Unfortunately, bumping the produced file format version is a nuclear option for ensuring semantics are respected, since it also prevents older versions of PyTorch from loading anything (even tensors!) from newer versions.

Dynamic versioning addresses the nuclear consequences of bumping the produced file format version by only bumping it when necessary. That is, when an operator with changed semantics is detected in the serialized Torchscript. This will prevent Torchscript programs that use the changed operator from loading on earlier versions of PyTorch, as desired, but will have no impact on programs that don't use the changed operator.

Note that this change is only applicable when using torch.jit.save and torch.jit.load. torch.save pickles the given object using pickle (by default), which saves a function's Python directly.

No new tests for this behavior are added since the existing tests for versioned division in test_save_load already validate that models with div are loaded correctly at version 4.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40279

Reviewed By: dzhulgakov

Differential Revision: D22168291

Pulled By: mruberry

fbshipit-source-id: e71d6380e727e25123c7eedf6d80e5d7f1fe9f95
2020-06-24 12:52:50 -07:00
Danning XIE
ecd9a64712 fix torch.jit.trace_module documentation (#40248)
Summary:
This should fix https://github.com/pytorch/pytorch/issues/39328

Before:

![image](https://user-images.githubusercontent.com/24580222/85076992-4720e800-b18f-11ea-9c6e-19bcf3f1cb7d.png)

After:

![image](https://user-images.githubusercontent.com/24580222/85077064-6ddf1e80-b18f-11ea-9274-e8cee6909baa.png)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40248

Reviewed By: ezyang

Differential Revision: D22195038

Pulled By: zou3519

fbshipit-source-id: c4bff6579a422a56ed28b644f5558b20d901c94e
2020-06-24 07:31:31 -07:00
Elias Ellison
6468bc4637 [JIT] script if tracing fix (#40468)
Summary:
Currently, torchvision annotates `batched_nms` with `torch.jit.script` so the function gets compiled when it is traced and ONNX will work. Unfortunately, this means we are eagerly compiling batched_nms, which fails if torchvision isn't built with `torchvision.ops.nms`. As a result, torchvision doesn't work on torch hub right now.

`_script_if_tracing` could solve our problem here, but right now it does not correctly interact with recursive compilation. This PR fixes that bug.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40468

Reviewed By: jamesr66a

Differential Revision: D22195771

Pulled By: eellison

fbshipit-source-id: 83022ca0bab6d389a48a478aec03052c9282d2b7
2020-06-23 17:14:28 -07:00
Jerry Zhang
cbd53bfee8 [jit] Remove unnecessary clone APIs for script::Module and RecursiveScriptModule (#40297)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/40297

Test Plan: Imported from OSS

Differential Revision: D22191660

fbshipit-source-id: 4b338ca82caaca04784bffe01fdae3d180c192f4
2020-06-23 16:03:22 -07:00
Elias Ellison
8c20fb6481 [JIT] freeze doc (#40409)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/40409

Reviewed By: ezyang

Differential Revision: D22192709

Pulled By: eellison

fbshipit-source-id: 68cdb2e5040d31957fbd64690fdc03c058d13f9a
2020-06-23 15:44:03 -07:00
Meghan Lele
5fce7137a9 [WIP][JIT] Add ScriptModule._reconstruct (#39979)
Summary:
**Summary**
This commit adds an instance method `_reconstruct` that permits users
to reconstruct a `ScriptModule` from a given C++ `Module` instance.

**Testing**
This commit adds a unit test for `_reconstruct`.

**Fixes**
This pull request fixes https://github.com/pytorch/pytorch/issues/33912.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39979

Differential Revision: D22172323

Pulled By: SplitInfinity

fbshipit-source-id: 9aa6551c422a5a324b822a09cd8d7c660f99ca5c
2020-06-23 14:42:27 -07:00
Elias Ellison
f000b44d89 Fork/Join Inline Docs (relanding) (#40438)
Summary:
Added fork/wait to docs/source/jit.rst, hopefully that will fix test error.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40438

Differential Revision: D22188152

Pulled By: eellison

fbshipit-source-id: c19277284455fb6e7c0138b0c1423d90b147d18e
2020-06-23 13:25:51 -07:00
Jerry Zhang
f652abc1dd [jit] Enable copy.deepcopy and copy.copy for RecursiveScriptModule (#32685)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32685

att

Test Plan:
.

Imported from OSS

Differential Revision: D21220755

fbshipit-source-id: 5c71e9bb9f43032cf60563a9e67579118a8d7e33
2020-06-23 09:21:12 -07:00
Yanli Zhao
6c40ec55df Revert D22165477: [pytorch][PR] [JIT] Fork/Join inline docs
Test Plan: revert-hammer

Differential Revision:
D22165477

Original commit changeset: 93132cd6987f

fbshipit-source-id: f3d5d35b6640d786ec3bada1396b5d7ad645c26d
2020-06-22 20:51:56 -07:00
Elias Ellison
0d0608532c [JIT] Fork/Join inline docs (#39952)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/39952

Differential Revision: D22165477

Pulled By: eellison

fbshipit-source-id: 93132cd6987fdd2484112a57ef17912b8fcc5fab
2020-06-22 15:34:05 -07:00
Meghan Lele
d58b8222b7 [JIT] Add support for with statements (#34705)
Summary:
**Summary**
This commit adds support for with statements to PyTorch JIT. Each
of the with items in a with statement is represented in the JIT IR
as a pair of `prim::Enter` and `prim::Exit` nodes that call the
`__enter__` and `__exit__` methods defined on the context manager objects
returned by the expressions in the with item.

**Testing**
This commit adds unit tests for with statements with named with items,
nameless with items, and with statements that encounter exceptions.
```
$ python test/test_jit.py TestWith.test_with_as
Fail to import hypothesis in common_utils, tests are not derandomized
.
----------------------------------------------------------------------
Ran 1 test in 0.430s

OK
```

```
$ python test/test_jit.py TestWith.test_with_no_as
Fail to import hypothesis in common_utils, tests are not derandomized
.
----------------------------------------------------------------------
Ran 1 test in 0.264s

OK
```

```
$ python test/test_jit.py TestWith.test_with_exceptions
Fail to import hypothesis in common_utils, tests are not derandomized
Couldn't download test skip set, leaving all tests enabled...
.
----------------------------------------------------------------------
Ran 1 test in 1.053s

OK
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34705

Differential Revision: D22095945

Pulled By: SplitInfinity

fbshipit-source-id: f661565a834786725259b8ea014b4d7532f9419d
2020-06-18 16:57:18 -07:00
Shihao Xu
f3f30d4354 [JIT x RPC] Consolidate RRef type class and RRef impl class (#35694)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35694

close https://github.com/pytorch/pytorch/issues/35110

Differential Revision: D7881729

fbshipit-source-id: eedda8f1b7510491886d469efeed4e002bb8b991
2020-06-18 07:46:38 -07:00
Raghuraman Krishnamoorthi
3258cb61b1 Dynamic quantization support for LSTMCell, RNNCell and GRUCell [Remove randomness in weights] (#40102)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40102

Enable dynamic quantization for LSTMCell, RNNCell and GRUCell
ghstack-source-id: 105997236

(Note: this ignores all push blocking failures!)

Test Plan: buck test caffe2/test:quantization -- 'test_quantized_rnn_cell \(quantization\.test_quantize\.TestPostTrainingDynamic\)'

Differential Revision: D22071017

fbshipit-source-id: 3fe1eac39db9c1e0566838eb8b969bbb1fa983c9
2020-06-16 21:29:50 -07:00
Elias Ellison
b3dd4d9c33 [JIT] remove callable check to compile objects with __call__ (#40041)
Summary:
Fix for https://github.com/pytorch/vision/issues/2320 - still need to fix whatever reverting this change breaks

EDIT: reverting this change doesnt seem to break anything, and fixes the torchvision issue
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40041

Reviewed By: eellison

Differential Revision: D22067586

Pulled By: fmassa

fbshipit-source-id: 4b235fd3a69665dcc5689f12310097be31b40a28
2020-06-16 10:52:38 -07:00
Raghuraman Krishnamoorthi
e55e0cb1a9 Revert D20978736: Dynamic quantization support for LSTMCell, RNNCell and GRUCell
Test Plan: revert-hammer

Differential Revision:
D20978736

Original commit changeset: 8f303ba1d7f8

fbshipit-source-id: bcd300819616d6536f582fcd3c90decd543c4657
2020-06-16 10:11:32 -07:00
Raghuraman Krishnamoorthi
48db06e39a Dynamic quantization support for LSTMCell, RNNCell and GRUCell (#37159)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37159

Enable dynamic quantization for LSTMCell, RNNCell and GRUCell
ghstack-source-id: 105946183

(Note: this ignores all push blocking failures!)

Test Plan: buck test caffe2/test:quantization -- 'test_quantized_rnn_cell \(quantization\.test_quantize\.TestPostTrainingDynamic\)'

Differential Revision: D20978736

fbshipit-source-id: 8f303ba1d7f8e0c646ac73e862d2c1e735b7ff61
2020-06-16 09:14:59 -07:00
Shihao Xu
00651b8c93 [distribtued.nn] Implement TorchScript-compatible RemoteModule API (#37139)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37139

See design doc in https://github.com/pytorch/pytorch/issues/37136

ghstack-source-id: 105926270

Test Plan:
TODO:

- Make the generated Interface usable. https://github.com/pytorch/pytorch/pull/37139#discussion_r434190978
-
- Avoid generating the same template instances for Module that is not scriptable.
- Remove "infer_module_interface_cls".
- Use Python format instead of a CodeTemplate
- Use Python tempfile to track and delete file. Does it work if there is crash.

```
buck test mode/dev-nosan //caffe2/test/distributed/nn/jit:test_instantiator

buck build mode/dev-nosan //caffe2/test/distributed/nn/jit:test_instantiator && \
buck-out/gen/caffe2/test/distributed/nn/jit/test_instantiator\#binary.par -r test_instantiate_scripted_remote_module_template

buck build mode/dev-nosan //caffe2/test/distributed/nn/jit:test_instantiator && \
buck-out/gen/caffe2/test/distributed/nn/jit/test_instantiator\#binary.par -r test_instantiate_non_scripted_remote_module_template
```

```
buck test mode/dev-nosan //caffe2/test/distributed/nn/api:remote_module_spawn
```

```
buck test mode/dev-nosan //caffe2/test/distributed/nn/api:remote_module_fork

buck build mode/dev-nosan //caffe2/test/distributed/nn/api:remote_module_fork && \
buck-out/gen/caffe2/test/distributed/nn/api/remote_module_fork\#binary.par -r test_user_provided_global_unique_name

buck build mode/dev-nosan //caffe2/test/distributed/nn/api:remote_module_fork && \
buck-out/gen/caffe2/test/distributed/nn/api/remote_module_fork\#binary.par -r test_forward_async_script

buck build mode/dev-nosan //caffe2/test/distributed/nn/api:remote_module_fork && \
buck-out/gen/caffe2/test/distributed/nn/api/remote_module_fork\#binary.par -r test_forward_sync_script

buck build mode/dev-nosan //caffe2/test/distributed/nn/api:remote_module_fork && \
buck-out/gen/caffe2/test/distributed/nn/api/remote_module_fork\#binary.par -r test_forward_with_kwargs

buck build mode/dev-nosan //caffe2/test/distributed/nn/api:remote_module_fork && \
buck-out/gen/caffe2/test/distributed/nn/api/remote_module_fork\#binary.par -r test_user_provided_global_unique_name
```

```
buck test mode/dev-nosan //caffe2/test/distributed/rpc:rpc_fork
```

buck test mode/opt-asan //caffe2/test:jit -- 'test_script_forward_method_replacement

buck build mode/dev-nosan //caffe2/test:jit && \
buck-out/gen/caffe2/test/jit\#binary.par -r 'test_script_forward_method_replacement'

buck build mode/dev-nosan //caffe2/test:jit && \
buck-out/gen/caffe2/test/jit\#binary.par -r 'test_imported_classes'

Differential Revision: D20499658

fbshipit-source-id: dd9383ae4eb2343366c11127664f845b91ca3b0a
2020-06-15 19:07:35 -07:00
Nikita Shulga
c6b69a4e4d Delete Python <= 3.5 specific checks from the code (#39879)
Summary:
Remove PY3 and PY34 checks from `torch/testing/_internal/common_utils.py`
 Remove PY35 global var from `torch.jit.annotations`
Always call `try_get_real_signature` in `torch/jit/annotations.py`
Use `map` instead of `imap`, since Python-2 is no longer support, so map is always lazy.
Remove all pre Python-3.6 checks from `torch/_six.py` and `torch/_appdirs.py`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39879

Differential Revision: D22037811

Pulled By: malfet

fbshipit-source-id: af0c79f976569c2059d39ecb49c6b8285161734f
2020-06-15 08:16:06 -07:00
Xingying Cheng
bdef721caf [fbcode] Add find_method into lite interpreter python binding.
Summary: Add 'find_method' into 'LiteScriptModule' python binding method, so that we use it to find existence of methods, e.g. "get_all_bundled_inputs".

Reviewed By: linbinyu, houseroad

Differential Revision: D22029002

fbshipit-source-id: 9acf76880fc989e825dc3a9186dab6928caee75e
2020-06-13 07:48:13 -07:00
Edward Yang
eace053398 Move all torch.nn.modules type annotations inline (#38211)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38211

Just because the annotations are inline doesn't mean the files type
check; most of the newly annotated files have type errors and I
added exclusions for them in mypy.ini.  The payoff of moving
all of these modules inline is I can delete the relevant code
generation logic for the pyi files (which was added ignore
annotations that weren't actually relevant anymore.)

For the most part the translation was completely mechanical, but there
were two hairy issues.  First, I needed to work around a Python 3.6 and
earlier bug where Generic has a nontrivial metaclass.  This fix is in
torch/jit/__init__.py.  Second, module.py, we need to apply the same
fix for avoiding contravariance checks that the pyi file used to have;
this is done by declaring forward as a variable (rather than a
function), which appears to be sufficient enough to get mypy to not
contravariantly check input arguments.

Because we aren't actually typechecking these modules in most
cases, it is inevitable that some of these type annotations are wrong.
I slavishly copied the old annotations from the pyi files unless there
was an obvious correction I could make.  These annotations will probably
need fixing up later.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D21497397

Pulled By: ezyang

fbshipit-source-id: 2b08bacc152c48f074e7edc4ee5dce1b77d83702
2020-06-11 15:59:57 -07:00
Elias Ellison
428bc90978 [JIT] add dtype as type annotation (#39741)
Summary:
make torch.dtype resolve as type annotation
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39741

Reviewed By: jamesr66a

Differential Revision: D21956469

Pulled By: eellison

fbshipit-source-id: 492acd7403fa827a2e2c87fd08d31450fcb3a45e
2020-06-09 15:01:00 -07:00
Wanchao Liang
f32c9eb579 [jit] register distributed backward (#38494)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38494

This register distributed.autograd.backward to jit

Test Plan: Imported from OSS

Differential Revision: D21596133

Pulled By: wanchaol

fbshipit-source-id: b64343010616a636304de54ae74ad4fb83445a62
2020-06-08 19:43:40 -07:00
Yanan Cao
0031108b60 Support torch.Tensor subclass (like Parameter) input. (#39487)
Summary:
Currently torch.Tensor subclasses (like torch.nn.Parameter) isn't a supported type annotation to torch script inputs. This PR allows it to be treated like torch.Tensor for compilation.

Closes https://github.com/pytorch/pytorch/issues/38235
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39487

Differential Revision: D21885827

Pulled By: gmagogsfm

fbshipit-source-id: 1ec51829b132b7b0293a6c526d73497b23dae113
2020-06-05 11:58:20 -07:00
mattip
ada2652ca6 Restore docs coverage test via sphinx (#39331)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39331

Fixes gh-37590

Adds an extra `make coverage` to document building, which uses the built-in facility in sphinx to check docstring coverage. Also fixes a failure to import `torch/jit/supported_ops.py` which broke the [Torchscript Builtins](https://pytorch.org/docs/stable/jit_builtin_functions.html) page.

This also adds the required `SPHINXOPTS` to turn warnings into error, but this is commented out. Note that since documentation of `torchvision` is merged in here, failures there would cause failures here if this is made active. Some thought might be needed about pinning the torchvision version merged into documentation.

The first commit should fail, since the "ScriptModule" class is commented out. I did that in order to check that a CI failure is properly reported.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38244

Differential Revision: D21640589

Pulled By: ezyang

fbshipit-source-id: 1e240d81669b5f21404d596de4a27d192dc9fd8a
2020-06-04 10:49:38 -07:00
Xingying Cheng
adc13432fe Enabling lite interpreter in torch python API (#39181)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39181

Create a python binding classes torch._C. LiteScriptModule for mobile::module, a python class called LiteScriptModule is created which wrap torch._C. LiteScriptModule.
Python class LiteScriptModule contains preliminary functions including forward, run_method and __call__.

Create a python api "load_for_lite_interpreter" under torch.jit.mobile where takes pre-saved mobile module in a file-like object as input and returns python class LiteScriptModule.

Add a python binding method "_save_to_buffer_for_mobile" under ScriptModule, and python method "_save_to_buffer_for_lite_interpreter" under RecursiveScriptModule which saves mobile module into buffer instead of file.
ghstack-source-id: 105215736

Test Plan: buck test caffe2/test:mobile

Differential Revision: D21757474

fbshipit-source-id: 758b87497d65c4686459a567d41887c7a577aa4c
2020-06-03 18:33:23 -07:00
Xiang Gao
ebd4125e7e [JIT] Make torch.unique_consecutive compatible (#39339)
Summary:
A `unique_consecutive` version of https://github.com/pytorch/pytorch/pull/38156
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39339

Differential Revision: D21823997

Pulled By: eellison

fbshipit-source-id: d14596a36ba36497e296da5a344e0376cef56f1b
2020-06-02 14:54:29 -07:00
Yuxin Wu
68f23d566a [pytorch] Let jit.unused ignore unsupported method signature (#39336)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/39336

Test Plan: next diff

Differential Revision: D21814656

fbshipit-source-id: 0bc6bcf668715473553f200a6ffea981abef09a6
2020-06-02 00:16:54 -07:00
Jie
07518e120b [nvFuser] add torch.jit.fuser context manager (#38993)
Summary:
1. `torch.jit.fuser(str)` context manager facilitates switch between backend fusers:
  str - 'fuser0' enables only legacy fuser;
  str - 'fuser1' enables only NNC;
  str - 'fuser2' enables only nvFuser;
2. cleanup updated python tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38993

Reviewed By: nairbv, pbelevich

Differential Revision: D21800620

Pulled By: soumith

fbshipit-source-id: 7fe855f5a5b97368e5e84c98c28d04b2e1276c85
2020-06-01 10:52:40 -07:00
Shawn Zhong
f872cf5ed0 Add %= support in TorchScript (#38983)
Summary:
Fix https://github.com/pytorch/pytorch/issues/38336

Add %= support in TorchScript. It's now possible to do something like:
```py
torch.jit.script
def mm(a,b):
    a %= b
    return a
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38983

Differential Revision: D21803523

Pulled By: SplitInfinity

fbshipit-source-id: 3437860d06d32e26ca9a5497099148c1f1616c5b
2020-05-31 12:51:56 -07:00
Meghan Lele
916084d933 [JIT] Allow @torch.jit.unused to be used on TS classes (#38522)
Summary:
**Summary**
This commit enables the use of `torch.jit.unused` on methods of TorchScript classes.
This attribute is honoured by replacing the body of any method
marked as unused in the parsed AST for the class with `raise Exception(...)`.

**Test Plan**
This commit adds a unit test `TestClassType.test_unused_method` that
tests this feature.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38522

Differential Revision: D21733818

Pulled By: SplitInfinity

fbshipit-source-id: 771872359dad70fac4aae83b6b5f17abb6329890
2020-05-26 23:21:54 -07:00
mattip
8650376444 DOC: fix import error (#38921)
Summary:
Fixes errors when importing the module. The import is used by sphinx in documentation builds.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38921

Differential Revision: D21722144

Pulled By: ezyang

fbshipit-source-id: 5f31d4750325f1753de93754a009006cbc13655e
2020-05-26 15:58:34 -07:00
Michael Voznesensky
f6f1384811 [JIT] Refactor attributes to support buffers and parameters as first class citizens, add support for iterating over named_buffers() (#37905)
Summary:
First part of https://github.com/pytorch/pytorch/issues/36211 - still a WIP, but asking for commentary to ensure this is the direction we want to go in.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37905

Differential Revision: D21633735

Pulled By: voznesenskym

fbshipit-source-id: f4e4302e40114513776c9e48867a90d72049e2e9
2020-05-18 23:23:43 -07:00
Elias Ellison
daa85cfe2e [JIT] Exit Transform Rewrite (#38282)
Summary:
After an early return, we conditionalize all further execution. This means that currently the pattern of
`if return elif return elif return` generates better code than `if return if return if return`. It's obviously not good to have semantically equivalent code generate worse IR, so we should rewrite the graph to handle this case. This came up in https://github.com/pytorch/pytorch/pull/37171

```
torch.jit.script
def test_foo(x: bool, y: bool):
    if x:
        return 1
    return 2
print(test_foo.code)
```
generates:
```
def test_foo(x: bool,
    y: bool) -> int:
  _0 = uninitialized(int)
  if x:
    _1, _2 = True, 1
  else:
    _1, _2 = False, _0
  if _1:
    _3 = _2
  else:
    _3 = 2
  return _3
```
while
```
torch.jit.script
def test_foo(x: bool, y: bool):
    if x:
        return 1
    else:
        return 2
print(test_foo.code)
```
generates:
```
def test_foo(x: bool,
    y: bool) -> int:
  if x:
    _0 = 1
  else:
    _0 = 2
  return _0
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38282

Differential Revision: D21576733

Pulled By: eellison

fbshipit-source-id: 80cf1ad7fbda6d8d58557abbfb21c90eafae7488
2020-05-15 12:22:28 -07:00
Meghan Lele
62afc2d63d [JIT] Remove debug print statement added in #37994 (#38524)
Summary:
**Summary**
This commit removes a print statement added in https://github.com/pytorch/pytorch/issues/37994 that appears to
be for debugging and was most likely not intended to be commited.

**Test Plan**
Continuous integration.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38524

Differential Revision: D21587268

Pulled By: SplitInfinity

fbshipit-source-id: 6bdcdce647c45f5c0a2ba179a3545a1c0cae1492
2020-05-15 12:01:34 -07:00
David Reiss
7026b39ac7 Remove _uses_true_division (#35618)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35618

Python 2 has reached end-of-life and is no longer supported by PyTorch.
Python 3 always uses true division.

Test Plan: CI

Differential Revision: D20842884

Pulled By: dreiss

fbshipit-source-id: 522e34bb584d4bdb01c9c40eb267955062a57774
2020-05-14 10:07:42 -07:00
Michael Suo
167a978a03 Fix method stub creation for function attributes (#37994)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37994

Before, reassigning a method in a module (like `forward = _forward`)
didn't work, because we look at the function object's name for our def
name when building AST. Mkae that overrideable to handle cases like
reassignment

Test Plan: Imported from OSS

Differential Revision: D21444535

Pulled By: suo

fbshipit-source-id: 4f045f18b5a146edc8005689af525d7d7ed8dd5f
2020-05-12 23:20:35 -07:00
Elias Ellison
eb3e9872c9 [JIT] make torch.unique compilable (#38156)
Summary:
Fix for https://github.com/pytorch/pytorch/issues/37986

Follows the stack in https://github.com/pytorch/pytorch/pull/33783 stack to make functions in `torch/functional.py` resolve to their python implementations. Because the return type of `torch.unique` depends on `return_inverse` and `return_counts` I had to refactor the implementation to use our boolean_dispatch mechanism.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38156

Differential Revision: D21504449

Pulled By: eellison

fbshipit-source-id: 7efb1dff3b5c00655da10168403ac4817286ff59
2020-05-12 18:37:53 -07:00
Elias Ellison
c2ac2127be [JIT] recursively compile class types (#38050)
Summary:
Make it so that non-nn Module classes do not need to be annotated with `torch.jit.script`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38050

Differential Revision: D21482654

Pulled By: eellison

fbshipit-source-id: 22689e4d7a33f6e1574b9495cff29a1fe6abb910
2020-05-12 17:16:28 -07:00
Meghan Lele
1456515f15 [JIT] Disallow plain List type annotation without arg (#38130)
Summary:
**Summary**
This commit detects and prohibits the case in which `typing.List` is
used as an annotation without a type argument (i.e. `typing.List[T]`).
At present, `typing.List` is always assumed to have one argument, and
when it is used without one, `typing.List.__args__[0]` is nonempty and
set to some `typing.TypeVar` instance, which has no JIT type equivalent.
Consequently, trying to convert `typing.List` to a JIT type results in
a `c10::ListType` with `nullptr` for its element type, which can cause
a segmentation fault.

This is fixed by returning a `ListType` from
`jit.annotations.try_ann_to_type` only if the element type is converted
successfully to a JIT type and returning `None` otherwise.

**Test Plan**
I ran the code from the issue (https://github.com/pytorch/pytorch/issues/37530) that reported this problem and also ran some unit tests.

*Before*
```
$ python3 segfault.py
Segmentation fault (core dumped)
```

*After*
```
$ python3 segfault.py
Traceback (most recent call last):
...
RuntimeError:
Unknown type name 'List':
  File "segfault.py", line 9
    classmethod
    def cat(cls, box_lists: List):
                            ~~~~ <--- HERE
        return cls(torch.cat([x for x in box_lists]))
'Boxes.cat' is being compiled since it was called from 'Boxes'
  File "segfault.py", line 13
def f(t: torch.Tensor):
    b = Boxes(t)
        ~~~~~ <--- HERE
    c = Boxes(torch.tensor([3, 4]))
    return Boxes.cat([b, c])
'Boxes' is being compiled since it was called from 'f'
  File "segfault.py", line 13
def f(t: torch.Tensor):
    b = Boxes(t)
    ~~~~~~~~~~~ <--- HERE
    c = Boxes(torch.tensor([3, 4]))
    return Boxes.cat([b, c])
```

**Fixes**
This pull request fixes https://github.com/pytorch/pytorch/issues/37530.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38130

Differential Revision: D21485284

Pulled By: SplitInfinity

fbshipit-source-id: 9b51ef6340485a24c8b7cfb85832d4668b8ac51a
2020-05-11 14:15:54 -07:00
ycao
ae534dc978 [TorchScript] Explicitly disallow del with more than 1 operand. (#38089)
Summary:
del in python supports multiple operands, but PyTorch c++ frontend doesn't support that. To be consistent across different frontends, we decided to throw an exception when finding del with multiple operands inside torchscript.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38089

Test Plan: Unit tests in test/jit/test_builtins.py

Differential Revision: D21478900

Pulled By: SplitInfinity

fbshipit-source-id: 1cbd61301680c5d6652ef104996178cefcdd3716
2020-05-08 17:56:36 -07:00
James Reed
c1e7758b5e Back out "Revert D20229168: [quantization] Use torchbind for Linear PackedParams" (#38101)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38101

Original commit changeset: 29e8a4d3b8bf
ghstack-source-id: 103730417

Test Plan: waitforsadcastle

Differential Revision: D21471381

fbshipit-source-id: a922cdf31ba32021e7264ae1454c646c0bfd7ef4
2020-05-08 10:53:06 -07:00
Nikita Shulga
4bc0a7f86a Revert D20229168: [quantization] Use torchbind for Linear PackedParams
Test Plan: revert-hammer

Differential Revision:
D20229168

Original commit changeset: 3607cac9aa5b

fbshipit-source-id: 29e8a4d3b8bffd95ff6a58b46c4f1c1e23770304
2020-05-07 19:47:45 -07:00
James Reed
eaf9b28c55 [quantization] Use torchbind for Linear PackedParams (#34140)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/34140

Test Plan: Imported from OSS

Reviewed By: ZolotukhinM

Differential Revision: D20229168

Pulled By: jamesr66a

fbshipit-source-id: 3607cac9aa5b4b044572329742baed03350491c6
2020-05-07 19:03:44 -07:00
Ralf Gommers
46ed3349f3 Add --check-untyped-defs to mypy.ini and test suite (#37594)
Summary:
Also move the ignores for imports to the bottom in `mypy.ini`, those are much less interesting - start with the stuff people want to work on.

Second commit tests the instructions: remove an ignore, fix the issue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37594

Differential Revision: D21434858

Pulled By: ezyang

fbshipit-source-id: 4f1a6868cdb4cb59d072bcf105f48c3a5ba3ff98
2020-05-07 06:36:01 -07:00
Elias Ellison
28ed04c620 [JIT] remove list_with_default op (#37886)
Summary:
We can implement this as a builtin instead of as a registered op.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37886

Differential Revision: D21414329

Pulled By: eellison

fbshipit-source-id: 6e130fa83fbf7ba4d4601f509cb169a2fa804108
2020-05-06 17:32:11 -07:00
Ailing Zhang
dd618216c5 [JIT]Support adv indexing using list. (#37848)
Summary:
We used to only support indexing through
- numbers like `x[0, 1]`
- tuple like `x[(0, 1)]`
- tensor like `x[torch.tensor([0, 1])]`

This PR adds support for indexing through list which is equivalent to tensor.
- `x[[0, 1, 5]]`
- `x[[0, 1], [0, 1]]`
- `x[[[0, 1], [0, 1]], [[0, 1], [0, 1]]]`

Note for `x[[0, 1, 5]]` we had a bug in AST conversion code so we used to treat it like `x[0, 1, 5]` which means it might accidentally run and produce wrong result(fixes https://github.com/pytorch/pytorch/issues/37286 fixes https://github.com/pytorch/pytorch/issues/18616), now that it's fixed we probably want to mark it as BC breaking.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37848

Reviewed By: suo

Differential Revision: D21409840

Pulled By: ailzhang

fbshipit-source-id: 6f2d962885c6dc009cb384d98be1822f5ca7a189
2020-05-06 10:44:48 -07:00
Michael Suo
bd220b336b [jit] fix trace checking reporting divergent names (#37842)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37842

Fixes https://github.com/pytorch/pytorch/issues/23993.

Previously our name lookup function for the tracer was looking in
f.globals for names. For example:
```
sample1 = torch.ones(1)
sample2 = torch.ones(1)
traced = torch.jit.trace(my_mod, ((sample1, sample2,),))
> produces a graph with something like:
> %sample1, %sample2 = prim::TupleUnpack(%input)
```

This is not great if you are, e.g. trace checking, because a non-local
bit of interpreter state is affected the graph produced:
```
traced = torch.jit.trace(my_mod, _clone_inputs((sample, sample,),))
> produces a graph with something like
> %0, %1 = prim::TupleUnpack(%input)
```
I have removed this functionality, as I don't think it provides huge
value. Things that look locally for names will still work, so e.g.
inputs, intermediate variables, and the like will be named correctly.

Test Plan: Imported from OSS

Differential Revision: D21406478

Pulled By: suo

fbshipit-source-id: 3c7066b95d4a6e9b528888309954b02dadbc1a07
2020-05-05 13:39:41 -07:00
Edward Yang
4fef3763dd Revert "Revert D21337640: [pytorch][PR] Split up documentation into subpages and clean up some warnings" (#37778)
Summary:
Original PR: https://github.com/pytorch/pytorch/pull/37419

cc mattip suo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37778

Differential Revision: D21385774

Pulled By: ezyang

fbshipit-source-id: 5de532faab8bae132736b6b5189e0ee2ac9935be
2020-05-04 14:32:35 -07:00
Michael Suo
20f7e62b1d Revert D21337640: [pytorch][PR] Split up documentation into subpages and clean up some warnings
Test Plan: revert-hammer

Differential Revision:
D21337640

Original commit changeset: d4ad198780c3

fbshipit-source-id: fa9ba6ac542173a50bdb45bfa12f3fec0ed704fb
2020-05-04 10:57:55 -07:00
mattip
f10fbcc820 Split up documentation into subpages and clean up some warnings (#37419)
Summary:
xref gh-32838, gh-34032

This is a major refactor of parts of the documentation to split it up using sphinx's `autosummary` feature which will build out `autofuction` and `autoclass` stub files and link to them. The end result is that the top module pages like torch.nn.rst and torch.rst are now more like table-of-contents to the actual single-class or single-function documentations pages.

Along the way, I modified many of the docstrings to eliminate sphinx warnings when building. I think the only thing I changed from a non-documentation perspective is to add names to `__all__` when adding them to `globals()` in `torch.__init__.py`

I do not know the CI system: are the documentation build artifacts available after the build, so reviewers can preview before merging?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37419

Differential Revision: D21337640

Pulled By: ezyang

fbshipit-source-id: d4ad198780c3ae7a96a9f22651e00ff2d31a0c0f
2020-05-04 09:39:22 -07:00
Michael Voznesensky
91e74fd843 [JIT] Adds a code_with_constants method to module printing (#37586)
Summary:
Closes https://github.com/pytorch/pytorch/issues/36625
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37586

Differential Revision: D21331385

Pulled By: suo

fbshipit-source-id: 752e63eac8bdd06c6719efb972cdc832ad7c1535
2020-04-30 20:44:01 -07:00
Michael Suo
896f8130a6 Revert D21297549: [jit] fix trace checking reporting divergent names
Test Plan: revert-hammer

Differential Revision:
D21297549

Original commit changeset: 981d5879a4a2

fbshipit-source-id: 9be6e88007c644914973a305f9e7a961ef11a815
2020-04-29 16:16:44 -07:00
Michael Suo
4bfa51d405 [jit] fix trace checking reporting divergent names (#37464)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37464

Fixes https://github.com/pytorch/pytorch/issues/23993.

There are two fixes here:
1. Previously our name lookup function for the tracer was looking in
f.globals for names. For example:
```
sample = torch.ones(1)
traced = torch.jit.trace(my_mod, ((sample, sample,),))
# produces a graph with something like
# %sample, %sample = prim::TupleUnpack(%input)
```
This is not great if you are, e.g. trace checking, because a non-local
bit of interpreter state is affected the graph produced:
```
traced = torch.jit.trace(my_mod, _clone_inputs((sample, sample,),))
# produces a graph with something like
# %0, %1 = prim::TupleUnpack(%input)
```
I have removed this functionality, as I don't think it provides huge
value. Things that look locally for names will still work, so e.g.
inputs, intermediate variables, and the like will be named correctly.

2. Previously, our input cloning for trace checking didn't do a memoized
deep copy. So:
```
_clone_inputs((sample, sample, sample))
```
produces a tuple with three non-aliased tensors. That's wrong! Use
copy.deepcopy with a memoization argument to fix this.

Test Plan: Imported from OSS

Differential Revision: D21297549

Pulled By: suo

fbshipit-source-id: 981d5879a4a244520dd68489767129ff357f1497
2020-04-28 23:52:57 -07:00
James Reed
fd4a09ea73 [WIP] Bind in CellParams for RNN (#35787)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/35787

Test Plan: Imported from OSS

Differential Revision: D20784118

Pulled By: jamesr66a

fbshipit-source-id: 5d8f7e1502f707bff9a9aefa90e3edfb3429549b
2020-04-28 21:47:06 -07:00
moto
5a27ec09b8 Add Inverse Short Time Fourier Transform in ATen native (#35569)
Summary:
Ported `torchaudio`'s implementation (test, and documentation as well) to ATen.

Note
 - Batch packing/unpacking is performed in Python. ATen implementation expects 4D input tensor.
 - The way `hop_length` is initialized in the same way as `stft` implementation. [The Torchaudio's version tried to mimic the same behavior but slightly different](7da61a4bee/torchaudio/functional.py (L152-L157)).

Closes https://github.com/pytorch/pytorch/issues/34827
Relates https://github.com/pytorch/pytorch/issues/3775
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35569

Differential Revision: D21178090

Pulled By: mthrok

fbshipit-source-id: 2701a8b241a36a6fb1b740c2fb2b07cb938185d4
2020-04-24 12:14:55 -07:00
David Reiss
e75fb4356b Remove (most) Python 2 support from Python code (#35615)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35615

Python 2 has reached end-of-life and is no longer supported by PyTorch.
Now we can clean up a lot of cruft that we put in place to support it.
These changes were all done manually, and I skipped anything that seemed
like it would take more than a few seconds, so I think it makes sense to
review it manually as well (though using side-by-side view and ignoring
whitespace change might be helpful).

Test Plan: CI

Differential Revision: D20842886

Pulled By: dreiss

fbshipit-source-id: 8cad4e87c45895e7ce3938a88e61157a79504aed
2020-04-22 09:23:14 -07:00
Nikolay Korovaiko
b5483b8286 [pytorch][PR] Re-enable a failing test (#36763)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/36763

Differential Revision: D21083309

Pulled By: Krovatkin

fbshipit-source-id: 4fb5b95bd3e01bd83a406d4394f266d7fd168f21
2020-04-16 22:21:47 -07:00
Sebastian Messmer
e9b4580411 Revert D20839674: [pytorch][PR] Re-enable a failing test
Test Plan: revert-hammer

Differential Revision:
D20839674

Original commit changeset: 68f41610a823

fbshipit-source-id: b69ccfd49bbde566870fa53cd3fe2931721db4ea
2020-04-16 15:26:34 -07:00
Nikolay Korovaiko
487dc0f961 Re-enable a failing test (#35847)
Summary:
This test was failing because caching resulted into a function with multiple execution plans rather than multiple functions with a single execution plan each as a test writer intended.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35847

Differential Revision: D20839674

Pulled By: Krovatkin

fbshipit-source-id: 68f41610a823d94c1e744c85ac72652c741d73ae
2020-04-16 11:46:02 -07:00
davidriazati
8d66f88eb1 [jit] Fix bound method copying (#36546)
Summary:
Previously we were copying the bound method of the original class to the
new script module class, which causes `self` to be wrong. This PR
changes it so we fetch the unbound function, then bind it to the new
script module, then attach it to the module.

Fixes #28280
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36546

Pulled By: driazati

Differential Revision: D21023329

fbshipit-source-id: 6b3f8404700860151792f669a9c02fbd13365272
2020-04-15 17:38:20 -07:00
Wanchao Liang
999d7f6ab2 [jit] tracer flag to guard risky behaivors (#36277)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36277

This PR introduce a flag to the tracer that guard the risky behaviors
like adding list/dict as output of the tracer. Currently to ensure not
BC breaking user, we throw warning if the tracer output is list, and
will throw error when the tracer output is dict to enforce using this
flag (next PR)

Test Plan: Imported from OSS

Differential Revision: D20998157

Pulled By: wanchaol

fbshipit-source-id: 0d2c55f1a263a48b1b92dd6ad54407815e0a6f72
2020-04-13 22:35:03 -07:00
Zachary DeVito
967cdc2baf Simplify replicate logic (#36174)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/36174

Test Plan: Imported from OSS

Differential Revision: D20903301

Pulled By: zdevito

fbshipit-source-id: 714a32fe417b7d1615886936c41505d1ba538f47
2020-04-13 11:21:43 -07:00
Orion Reblitz-Richardson
8240db11e1 [pytorch] Remove python2 support from tests and torch.jit (#35042)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35042

Removing python2 tests and some compat code in torch.jit. Check if dependent projects and external tests have any issues after these changes.

Test Plan: waitforsandcastle

Reviewed By: suo, seemethere

Differential Revision: D18942633

fbshipit-source-id: d76cc41ff20bee147dd8d44d70563c10d8a95a35
2020-03-26 21:29:51 -07:00
Wanchao Liang
4a84ac5f5d [jit] make Future type annotation available in Python (#27637)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27637

Fixes https://github.com/pytorch/pytorch/issues/26578

Test Plan: Imported from OSS

Differential Revision: D20626866

fbshipit-source-id: 20d6a3a719fddcb33e0e17a56d7123535fa20d65
2020-03-24 14:36:05 -07:00
davidriazati
44622bbda9 [jit] Add lazy script decorator (#34935)
Summary:
Stacked PRs
 * #34938 - [jit] Remove stray `script`
 * **#34935 - [jit] Add lazy script decorator**

Some users maintain libraries of code that is largely trace-able but not
script-able. However, some functions may need to be `torch.jit.script`ed if
they contain control flow so the tracer will use the compiler version.
This however impacts library start up time as in #33418, so this PR adds
a workaround in the form of a `torch.jit._lazy_script_while_tracing`
that will only initialize the compiler if the function is called while
actually tracing.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/34935

Pulled By: driazati

Differential Revision: D20569778

fbshipit-source-id: d87c88c02b1abc86b283729ab8db94285d7d4853
2020-03-24 13:43:18 -07:00
davidriazati
e35dd4f603 [jit] Include call stack in OSError message (#34669)
Summary:
Previously there was no indication of why you would get an `OSError` for something (such as the generated methods of a `dataclass`).
](https://our.intern.facebook.com/intern/diff/20426570/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34669

Pulled By: driazati

Differential Revision: D20426570

fbshipit-source-id: 45d63631984fa26a87c03de5523fb10d8abbc6db
2020-03-18 15:10:23 -07:00
Michael Suo
a57f92e4de [jit] copy unused/ignored methods to ScriptModule during compilation (#33981)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33981

Okay it turns out that https://github.com/pytorch/pytorch/pull/29342
deletes actually useful things from the resulting Python module. In
particular, people like having `ignore`'d methods attached so that they
can invoke them from python.

Test Plan: Imported from OSS

Differential Revision: D20171650

Pulled By: suo

fbshipit-source-id: 71862e932c6a56cd055d0cff6657887ee0ceb9a8
2020-03-16 10:38:59 -07:00
Tugrul Ince
c9023e3b12 Support left and right shift operators in JIT (#34563)
Summary:
With this PR, we can now support left and right shift operators in the JIT engine for <int, int> and <Tensor, int>.

Updated tests pass as expected:
```
> python test/test_jit.py
...
Ran 2427 tests in 84.861s

OK (skipped=139, expected failures=1)
```

Running the following code with Python results in the output below:
```
> cat ~/expressions.py
import torch

torch.jit.script
def fn(a, b):
    # type: (int, int)
    return (
        a << b,  # supported
        b >> a,  # supported
        a & b,
        a | b,
        a ^ b
    )
print(fn.graph)
```

```
> python ~/expressions.py
graph(%a.1 : int,
      %b.1 : int):
  %4 : int = aten::leftshift(%a.1, %b.1) # /home/ince/expressions.py:7:8
  %7 : int = aten::rightshift(%b.1, %a.1) # /home/ince/expressions.py:8:8
  %10 : int = aten::__and__(%a.1, %b.1) # /home/ince/expressions.py:9:8
  %13 : int = aten::__or__(%a.1, %b.1) # /home/ince/expressions.py:10:8
  %16 : int = aten::__xor__(%a.1, %b.1) # /home/ince/expressions.py:11:8
  %17 : (int, int, int, int, int) = prim::TupleConstruct(%4, %7, %10, %13, %16)
  return (%17)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34563

Differential Revision: D20434209

Pulled By: tugrulince

fbshipit-source-id: 886386c59755106e17b84778b8e495b80a6269cd
2020-03-13 13:00:33 -07:00
Elias Ellison
514cba0661 [JIT] remove builtin interpolate functions (#34514)
Summary:
`torch.nn.functional.interpolate` was written as a builtin op when we scripted the standard library, because it has four possible overloads. As a result, whenever we make a change to `interpolate`, we need to make changes in two places, and it also makes it impossible to optimize the interpolate op. The builtin is tech debt.

I talked with ailzhang, and the symbolic script changes are good to remove (i guess that makes a third place we needed to re-implement interpolate).

I'm trying to get rid of unneccessary builtin operators because we're standardizing mobile bytecode soon, so we should try to get this landed as soon as possible.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34514

Differential Revision: D20391089

Pulled By: eellison

fbshipit-source-id: abc84cdecfac67332bcba6b308fca4db44303121
2020-03-12 09:21:33 -07:00
Michael Suo
c235be42dd [jit] kill script namespace (#34515)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34515

Once upon a time we thought this was necessary. In reality it is not, so
removing it.

For backcompat, our public interface (defined in `api/`) still has
typedefs to the old `script::` names.

There was only one collision: `Pass` as a `Stmt` and `Pass` as a graph
transform. I renamed one of them.

Test Plan: Imported from OSS

Differential Revision: D20353503

Pulled By: suo

fbshipit-source-id: 48bb911ce75120a8c9e0c6fb65262ef775dfba93
2020-03-11 23:32:48 -07:00
davidriazati
23b2fba79a [jit] Add type tags to lists/dicts in pickle (#33255)
Summary:
Stacked PRs
 * #33474 - [jit] Remove list specializations from pickler
 * **#33255 - [jit] Add type tags to lists/dicts in pickle**

This adds a global call to `torch.jit._pickle.restore_type_tags` for
lists and dicts so that we can preserve their types after serialization.
](https://our.intern.facebook.com/intern/diff/20346780/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33255

Pulled By: driazati

Differential Revision: D20346780

fbshipit-source-id: c8534954ef4adb2e3c880401acbee30cd284f3db
2020-03-10 19:17:01 -07:00
James Reed
2de4fa702b [JIT] Preserve qualified names on traced modules (#34395)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34395

fixes: https://github.com/pytorch/pytorch/issues/33913

Test Plan: Imported from OSS

Differential Revision: D20347778

Pulled By: jamesr66a

fbshipit-source-id: 7b5a35b6f9678c34cb6127d531fa3bfe65703116
2020-03-09 19:23:53 -07:00
Elias Ellison
fea618b524 [JIT] remove list with default builtin (#34171)
Summary:
I think this was added when we couldn't compile the function itself. now we can.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34171

Differential Revision: D20269960

Pulled By: eellison

fbshipit-source-id: 0a60458d639995d9448789c249d405343881b304
2020-03-09 16:02:26 -07:00
Leah Dickstein
c5e822b7bb Back out "[jit] Add type tags to lists/dicts in pickle" (#34406)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34406

Pull Request resolved: https://github.com/pytorch/pytorch/pull/34405

Original commit changeset: 2f1826e6679a

Test Plan: reverting, see S197156

Reviewed By: akyrola, volkhin

Differential Revision: D20317456

fbshipit-source-id: 89298a9c022edba1d54bcdc7541804cb919e33f5
2020-03-06 20:02:16 -08:00
Elias Ellison
479c3b0aa5 [JIT] add support for torch.norm (#33783)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33783

Fix for https://github.com/pytorch/pytorch/issues/20113

Test Plan: Imported from OSS

Differential Revision: D20121917

Pulled By: eellison

fbshipit-source-id: ffedcc40678cd80f5529ff9323088eed544e5158
2020-03-05 14:46:24 -08:00
Adam Paszke
3a4bac5c76 Throw a proper error when parsing local variable annotations without assignments (#34133)
Summary:
Currently, putting `outputs: List[Tensor]` instead of `outputs: List[Tensor] = []` in your JITed code results in:
```
Traceback (most recent call last):
  File "custom_lstms.py", line 453, in <module>
    test_script_stacked_bidir_rnn(5, 2, 3, 7, 4)
  File "custom_lstms.py", line 404, in test_script_stacked_bidir_rnn
    rnn = script_lstm(input_size, hidden_size, num_layers, bidirectional=True)
  File "custom_lstms.py", line 62, in script_lstm
    other_layer_args=[LSTMCell, hidden_size * dirs, hidden_size]))
  File "/home/apaszke/pytorch/torch/jit/__init__.py", line 1267, in script
    return torch.jit._recursive.create_script_module(obj, torch.jit._recursive.infer_methods_to_compile)
  File "/home/apaszke/pytorch/torch/jit/_recursive.py", line 305, in create_script_module
    return create_script_module_impl(nn_module, concrete_type, stubs_fn)
  File "/home/apaszke/pytorch/torch/jit/_recursive.py", line 348, in create_script_module_impl
    script_module = torch.jit.RecursiveScriptModule._construct(cpp_module, init_fn)
  File "/home/apaszke/pytorch/torch/jit/__init__.py", line 1612, in _construct
    init_fn(script_module)
  File "/home/apaszke/pytorch/torch/jit/_recursive.py", line 340, in init_fn
    scripted = create_script_module_impl(orig_value, sub_concrete_type, infer_methods_to_compile)
  File "/home/apaszke/pytorch/torch/jit/_recursive.py", line 348, in create_script_module_impl
    script_module = torch.jit.RecursiveScriptModule._construct(cpp_module, init_fn)
  File "/home/apaszke/pytorch/torch/jit/__init__.py", line 1612, in _construct
    init_fn(script_module)
  File "/home/apaszke/pytorch/torch/jit/_recursive.py", line 340, in init_fn
    scripted = create_script_module_impl(orig_value, sub_concrete_type, infer_methods_to_compile)
  File "/home/apaszke/pytorch/torch/jit/_recursive.py", line 348, in create_script_module_impl
    script_module = torch.jit.RecursiveScriptModule._construct(cpp_module, init_fn)
  File "/home/apaszke/pytorch/torch/jit/__init__.py", line 1612, in _construct
    init_fn(script_module)
  File "/home/apaszke/pytorch/torch/jit/_recursive.py", line 340, in init_fn
    scripted = create_script_module_impl(orig_value, sub_concrete_type, infer_methods_to_compile)
  File "/home/apaszke/pytorch/torch/jit/_recursive.py", line 348, in create_script_module_impl
    script_module = torch.jit.RecursiveScriptModule._construct(cpp_module, init_fn)
  File "/home/apaszke/pytorch/torch/jit/__init__.py", line 1612, in _construct
    init_fn(script_module)
  File "/home/apaszke/pytorch/torch/jit/_recursive.py", line 340, in init_fn
    scripted = create_script_module_impl(orig_value, sub_concrete_type, infer_methods_to_compile)
  File "/home/apaszke/pytorch/torch/jit/_recursive.py", line 317, in create_script_module_impl
    stubs = stubs_fn(nn_module)
  File "/home/apaszke/pytorch/torch/jit/_recursive.py", line 511, in infer_methods_to_compile
    stubs.append(make_stub_from_method(nn_module, method))
  File "/home/apaszke/pytorch/torch/jit/_recursive.py", line 41, in make_stub_from_method
    return make_stub(func)
  File "/home/apaszke/pytorch/torch/jit/_recursive.py", line 34, in make_stub
    ast = torch.jit.get_jit_def(func, self_name="RecursiveScriptModule")
  File "/home/apaszke/pytorch/torch/jit/frontend.py", line 173, in get_jit_def
    return build_def(ctx, py_ast.body[0], type_line, self_name)
  File "/home/apaszke/pytorch/torch/jit/frontend.py", line 206, in build_def
    build_stmts(ctx, body))
  File "/home/apaszke/pytorch/torch/jit/frontend.py", line 129, in build_stmts
    stmts = [build_stmt(ctx, s) for s in stmts]
  File "/home/apaszke/pytorch/torch/jit/frontend.py", line 129, in <listcomp>
    stmts = [build_stmt(ctx, s) for s in stmts]
  File "/home/apaszke/pytorch/torch/jit/frontend.py", line 181, in __call__
    return method(ctx, node)
  File "/home/apaszke/pytorch/torch/jit/frontend.py", line 294, in build_AnnAssign
    rhs = build_expr(ctx, stmt.value)
  File "/home/apaszke/pytorch/torch/jit/frontend.py", line 180, in __call__
    raise UnsupportedNodeError(ctx, node)
  File "/home/apaszke/pytorch/torch/jit/frontend.py", line 116, in __init__
    source_range = ctx.make_range(offending_node.lineno,
AttributeError: 'NoneType' object has no attribute 'lineno'
```

This patch makes the error message more reasonable:
```
torch.jit.frontend.UnsupportedNodeError: annotated assignments without assigned value aren't supported:
  File "custom_lstms.py", line 221
        # type: (Tensor, Tuple[Tensor, Tensor]) -> Tuple[Tensor, Tuple[Tensor, Tensor]]
        inputs = reverse(input.unbind(0))
        outputs: List[Tensor]
        ~ <--- HERE
        for i in range(len(inputs)):
            out, state = self.cell(inputs[i], state)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34133

Differential Revision: D20249076

Pulled By: ezyang

fbshipit-source-id: 40ec34ad38859f9fe56f379d3f8d08644b00fab9
2020-03-05 11:23:07 -08:00
davidriazati
99e211e661 [jit] Add type tags to lists/dicts in pickle (#33255)
Summary:
Stacked PRs
 * #33474 - [jit] Remove list specializations from pickler
 * **#33255 - [jit] Add type tags to lists/dicts in pickle**

This adds a global call to `torch.jit._pickle.restore_type_tags` for
lists and dicts so that we can preserve their types after serialization.
](https://our.intern.facebook.com/intern/diff/19868637/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33255

Pulled By: driazati

Reviewed By: xman1979, Tianshu-Bao

Differential Revision: D19868637

fbshipit-source-id: 2f1826e6679a786ca209198690269f399a542c04
2020-03-03 16:48:21 -08:00
davidriazati
2f6ffe8c39 [jit] Resolve type annotation names to types (#29623)
Summary:
This adds some machinery so that we use Python to resolve types to a value and the corresponding resolution logic in `annotations.py` instead of using the string.

This PR also `slowTests` a random test since it was taking > 1 min whereas all the other tests take < 10 seconds.

Fixes #31864
Fixes #31950
](https://our.intern.facebook.com/intern/diff/20144407/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29623

Pulled By: driazati

Differential Revision: D20144407

fbshipit-source-id: ef3699f6b86039d8b4646ffc42c21bd1132d1681
2020-02-28 18:35:10 -08:00
Michael Suo
dbe850af5b [jit] do the code reorg (#33851)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33851

Rationale and context described in #33828.

Script to reproduce the move:
https://gist.github.com/suo/16cbefaaeb67ca5a7c6caffd49b7f6e9
ghstack-source-id: 99079645

Test Plan: Make sure CI passes

Reviewed By: jamesr66a

Differential Revision: D20133869

fbshipit-source-id: 390e9241a9c85366d9005c492ac31f10aa96488e
2020-02-27 13:02:51 -08:00
Wanchao Liang
d494986171 [jit] make RRef type annotation available in Python (#33526)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/33526

Test Plan: Imported from OSS

Differential Revision: D19988848

Pulled By: wanchaol

fbshipit-source-id: aeebc946d08b38dac0b656617bf395e86bcea558
2020-02-26 18:44:35 -08:00
Elias Ellison
857eb4145e [JIT] add support for torch.cdist (#33737)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/33737

Test Plan: Imported from OSS

Differential Revision: D20121916

Pulled By: eellison

fbshipit-source-id: b0427bbfd3ade1f3129c4a95a542fbc32c3abd76
2020-02-26 18:37:37 -08:00
Elias Ellison
f31b1d3453 [JIT] add support for lu_unpack (#33736)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/33736

Test Plan: Imported from OSS

Differential Revision: D20121914

Pulled By: eellison

fbshipit-source-id: 1136f4d7678a2233129aefe3e30234af385b8353
2020-02-26 18:37:33 -08:00
Elias Ellison
4543cf4eb1 [JIT] add support for torch.lu to torchscript (#33724)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33724

Fix for https://github.com/pytorch/pytorch/issues/33381, partial fix of https://github.com/pytorch/pytorch/issues/30786

Test Plan: Imported from OSS

Differential Revision: D20077321

Pulled By: eellison

fbshipit-source-id: a1e6a0370712b36c9f66979098ac2f9d500ca5f6
2020-02-26 18:37:28 -08:00
Elias Ellison
fddf73250d [JIT] fix resolving of functions in torch/functional. fix compilation of torch.stft (#33504)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33504

Fix resolution fo functions that are bound onto torch in torch/functional.py. This does not fix compilation of all of those functions, those will be done in follow ups. Does torch.stft as a start.

Fixes #21478

Test Plan: Imported from OSS

Differential Revision: D20014591

Pulled By: eellison

fbshipit-source-id: bb362f1b5479adbb890e72a54111ef716679d127
2020-02-26 18:35:43 -08:00
Jerry Zhang
8527ba8b70 [jit] Add None parameter as parameter instead of attributes (#32964)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32964

att

Test Plan:
.

Imported from OSS

Differential Revision: D19913188

fbshipit-source-id: 9cdd93cbaf9892f4311656c786637765a675a68c
2020-02-19 16:06:56 -08:00
Michael Suo
416413dec4 [jit] add inlined_graph method to ScriptFunctions (#33508)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33508

Ever since we switched to not inlining by default, some users have
complained since they relied on inlining occuring to, e.g. process the
graph with some other tool. Add an inlined_graph for convenience in
those cases.

Test Plan: Imported from OSS

Differential Revision: D19977638

Pulled By: suo

fbshipit-source-id: fe1fa92ff888959203d5d1995930d488b5f9e24c
2020-02-19 15:41:25 -08:00