Commit Graph

631 Commits

Author SHA1 Message Date
Alexander Grund
93719440b8 Replace map(lambda constructs (#46462)
Summary:
Follow-up of https://github.com/pytorch/pytorch/issues/46461 with a similar goal

Makes them more readable and possibly faster. Care has to be taken because `map` applies the function immediately while `(x for x in xs)` is a generator expression which gets evaluated later. This is a benefit in some cases where it is not required to actually create the list of values in memory (e.g. when passing to `tuple` or `extend` or `join`)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/46462

Reviewed By: zou3519

Differential Revision: D24422343

Pulled By: ezyang

fbshipit-source-id: 252e33499c92ac0b15238f2df32681dbbda2b237
2020-10-22 09:50:22 -07:00
Ansley Ussery
475b4e30e6 Allow for source code comments at any level of indentation (#46548)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/46548

Test Plan: Imported from OSS

Reviewed By: navahgar

Differential Revision: D24434778

Pulled By: ansley

fbshipit-source-id: e24ed73d497381e02ef1155622641027ae34770a
2020-10-21 13:49:42 -07:00
Lillian Johnson
f83cf2dab3 [JIT] adding torch.jit.isinstance support (#46062)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46062

Adds support for torch.jit.isinstance in both eager and script mode

Example use:

```
import torch
from typing import Any, List

class TestModule(torch.nn.Module):
    def __init__(self):
        super(TestModule, self).__init__()

    def call(self, input1: str, input2: str) -> str:
        return input1

    def forward(self, input: Any) -> None:
        if torch.jit.isinstance(input, List[str]):
            for el in input:
                print(el)

TestModule().forward(["1","2"])
scripted_module = torch.jit.script(TestModule())
scripted_module(["1", "2"])
```

Test Plan: Imported from OSS

Reviewed By: bertmaher, zou3519

Differential Revision: D24264415

Pulled By: Lilyjjo

fbshipit-source-id: 039c95bddd854c414027ac8332832e6bc830b5b9
2020-10-20 16:47:49 -07:00
Alexander Grund
5b0f400488 Replace list(map(...)) constructs by list comprehensions (#46461)
Summary:
As discussed in https://github.com/pytorch/pytorch/issues/46392 this makes the code more readable and possibly more performant.

It also fixes a bug detected by this where the argument order of `map` was confused: 030a24906e (diff-5bb26bd3a23ee3bb540aeadcc0385df2a4e48de39f87ed9ea76b21990738fe98L1537-R1537)

Fixes https://github.com/pytorch/pytorch/issues/46392

Pull Request resolved: https://github.com/pytorch/pytorch/pull/46461

Reviewed By: ailzhang

Differential Revision: D24367015

Pulled By: ezyang

fbshipit-source-id: d55a67933cc22346b00544c9671f09982ad920e7
2020-10-19 18:42:49 -07:00
Emilio Castillo
d38a71d579 torch.nn.modules.LazyModuleMixin and torch.nn.LazyLinear (Shape Inference II) (#44538)
Summary:
Retake on https://github.com/pytorch/pytorch/issues/40493 after all the feedback from albanD

This PR implements the generic Lazy mechanism and a sample `LazyLinear` layer with the `UninitializedParameter`.

The main differences with the previous PR are two;
Now `torch.nn.Module` remains untouched.
We don't require an explicit initialization or a dummy forward pass before starting the training or inference of the actual module. Making this much simpler to use from the user side.

As we discussed offline, there was the suggestion of not using a mixin, but changing the `__class__` attribute of `LazyLinear` to become `Linear` once it's completely initialized. While this can be useful, by the time being we need `LazyLinear` to be a `torch.nn.Module` subclass since there are many checks that rely on the modules being instances of `torch.nn.Module`.
This can cause problems when we create complex modules such as
```
class MyNetwork(torch.nn.Module):
    def __init__(self):
        super(MyNetwork, self).__init__()
        self.conv = torch.nn.Conv2d(20, 4, 2)
        self.linear = torch.nn.LazyLinear(10)
    def forward(self, x):
        y = self.conv(x).clamp(min=0)
        return self.linear(y)
```
Here, when the __setattr__ function is called at the time LazyLinear is registered, it won't be added to the child modules of `MyNetwork`, so we have to manually do it later, but currently there is no way to do such thing as we can't access the parent module from LazyLinear once it becomes the Linear module. (We can add a workaround to this if needed).

TODO:

Add convolutions once the design is OK
Fix docstrings

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44538

Reviewed By: ngimel

Differential Revision: D24162854

Pulled By: albanD

fbshipit-source-id: 6d58dfe5d43bfb05b6ee506e266db3cf4b885f0c
2020-10-19 13:13:54 -07:00
Yanan Cao
6a2f40dc66 Expose script_if_tracing as public API (#46494)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/45921

`torch.jit._script_if_tracing` is still kept for BC

Pull Request resolved: https://github.com/pytorch/pytorch/pull/46494

Reviewed By: ZolotukhinM

Differential Revision: D24381621

Pulled By: gmagogsfm

fbshipit-source-id: 35d9f2da38c591039ba95cd95ef186e6c7e47586
2020-10-17 17:31:57 -07:00
Rong Rong
89108ba6ea type check for torch.quantization.stubs (#46475)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/42973

Pull Request resolved: https://github.com/pytorch/pytorch/pull/46475

Reviewed By: malfet

Differential Revision: D24368088

Pulled By: walterddr

fbshipit-source-id: 7a0ccb4fa66b28d4ac59923d727e632351a02b3f
2020-10-16 15:34:23 -07:00
Meghan Lele
75bf5f2b59 [JIT] Improve class type annotation inference (#45940)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45940

**Summary**
In `try_ann_to_type`, if an annotation has an attribute named
`__torch_script_class__`, it is assumed to be a TorchScript class that
has already been scripted. However, if it is a class that extends
another class, this code path causes a crash because it looks up the
JIT type for the class by name in the compilation unit. This JIT type
obviously cannot exist because inheritance is not supported.

This commit fixes this by looking up the qualified name of a class
in torch.jit._state._script_class in order to ascertain whether it has
already been scripted (instead of looking for a `__torch_script_class__`
attribute on the class object.

**Test Plan**
This commit adds a unit test consisting of the code sample from the
issue that reported this problem.

**Fixes**
This commit fixes #45860.

Test Plan: Imported from OSS

Reviewed By: anjali411

Differential Revision: D24310027

Pulled By: SplitInfinity

fbshipit-source-id: 9f8225f3316fd50738d98e3544bf5562b16425b6
2020-10-14 23:28:47 -07:00
chengjun
5741de883a Define the record_stream method in native_functions.yaml (#44301)
Summary:
The record_stream method was hard coded for CUDA device. Define the record_stream in the native_functions.yaml to enable the dynamic dispatch to different end device.

Fixes https://github.com/pytorch/pytorch/issues/36556

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44301

Reviewed By: glaringlee

Differential Revision: D23763954

Pulled By: ezyang

fbshipit-source-id: e6d24f5e7892b56101fa858a6cad2abc5cdc4293
2020-10-13 09:15:22 -07:00
Taras Galkovskyi
acca11b898 [torchscript] Verbose logging of code location causing the error (#45908)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45908

As per subj, existing logging does not explain the cause of the error

Test Plan: unit tests pass.

Reviewed By: SplitInfinity

Differential Revision: D23609965

fbshipit-source-id: 818965176f7193c62035e3d2f0547bb525fea0fb
2020-10-08 06:15:49 -07:00
Jonathan Conder
9dc9a55bc4 Fix TypeError when torch.jit.load is passed a pathlib.Path (#45825)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/45824

Pull Request resolved: https://github.com/pytorch/pytorch/pull/45825

Reviewed By: VitalyFedyunin

Differential Revision: D24129441

Pulled By: gmagogsfm

fbshipit-source-id: 52a76e39c163206cee2d19967e333e948adefe99
2020-10-08 01:29:29 -07:00
Meghan Lele
4fdba30500 [JIT] Add API for ignoring arbitrary module attributes (#45262)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45262

**Summary**
This commit adds an API for ignoring arbitrary module attributes during
scripting. A class attribute named `ignored_attributes` containing names
of attributes to ignore can be added to the class of the instance being
scripted. Attributes ignored in this fashion cannot be used in
`forward`, methods used by `forward` or by `exported` methods. They
are, however, copied to the `RecursiveScriptModule` wrapper and can be
used by `ignored` methods and regular Python code.

**Test Plan**
This commit adds unit tests to `TestScriptPy3` to test this new API.

Test Plan: Imported from OSS

Reviewed By: eellison

Differential Revision: D23971882

Pulled By: SplitInfinity

fbshipit-source-id: 8c81fb415fde7b78aa2f87e5d83a477e876a7cc3
2020-10-06 18:02:06 -07:00
Ansley Ussery
f18cc9c57d Change type inferred from empty annotation (#45360)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/45360

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D24078645

Pulled By: ansley

fbshipit-source-id: 5d37d07df75bd7a2111d44638befe53c1021ee82
2020-10-05 15:16:56 -07:00
Lillian Johnson
9a668f94bb [jit] allow slicing multiple dimensions with indicies (#45239)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/45239

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D23886919

Pulled By: Lilyjjo

fbshipit-source-id: d45c2a550fa8df9960cf2ab5da9d1ae0058a967a
2020-10-05 15:03:54 -07:00
Malgi Nikitha Vivekananda
85a70ce71f Add multiline string dedent support (#45580)
Summary:
Fixes #{44842}
Summary
========
This PR adds support for multiline string dedents.

Test
=====
pytest -k test_multiline_string_dedents test/test_jit.py

Pull Request resolved: https://github.com/pytorch/pytorch/pull/45580

Reviewed By: wconstab

Differential Revision: D24025866

Pulled By: nikithamalgifb

fbshipit-source-id: 0f49739fb93f70f73a8f367caca2887f558a3937
2020-09-30 16:08:26 -07:00
Meghan Lele
09b3e16b40 [JIT] Enable @unused syntax for ignoring properties (#45261)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45261

**Summary**
This commit enables `unused` syntax for ignoring
properties. Inoring properties is more intuitive with this feature enabled.
`ignore` is not supported because class type properties cannot be
executed in Python (because they exist only as TorchScript types) like
an `ignored` function and module properties that cannot be scripted
are not added to the `ScriptModule` wrapper so that they
may execute in Python.

**Test Plan**
This commit updates the existing unit tests for class type and module
properties to test properties ignored using `unused`.

Test Plan: Imported from OSS

Reviewed By: navahgar, Krovatkin, mannatsingh

Differential Revision: D23971881

Pulled By: SplitInfinity

fbshipit-source-id: 8d3cc1bbede7753d6b6f416619e4660c56311d33
2020-09-29 10:24:25 -07:00
Wanchao Liang
3f89b779c4 [jit] allow submodule methods inference rule be different (#43872)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43872

This PR allows the recursive scripting to have a separate
submodule_stubs_fn to create its submodule with specific user provided
rules.

Fixes https://github.com/pytorch/pytorch/issues/43729

Test Plan: Imported from OSS

Reviewed By: suo

Differential Revision: D23430176

Pulled By: wanchaol

fbshipit-source-id: 20530d7891ac3345b36f1ed813dc9c650b28d27a
2020-09-23 14:10:31 -07:00
Meghan Lele
e045119956 [JIT] Add default arguments for class types (#45098)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45098

**Summary**
This commit adds support for default arguments in methods of class
types. Similar to how default arguments are supported for regular
script functions and methods on scripted modules, default values are
retrieved from the definition of a TorchScript class in Python as Python
objects, converted to IValues, and then attached to the schemas of
already compiled class methods.

**Test Plan**
This commit adds a set of new tests to TestClassType to test default
arguments.

**Fixes**
This commit fixes #42562.

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D23844769

Pulled By: SplitInfinity

fbshipit-source-id: ceedff7703bf9ede8bd07b3abcb44a0f654936bd
2020-09-22 18:37:44 -07:00
Yanan Cao
07d07e3c6c Remove EXPERIMENTAL_ENUM_SUPPORT feature guard (#44243)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/41095

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44243

Reviewed By: ZolotukhinM

Differential Revision: D23605979

Pulled By: gmagogsfm

fbshipit-source-id: 098ae69049c4664ad5d1521c45b8a7dd22e72f6c
2020-09-16 11:45:59 -07:00
Meghan Lele
e7d782e724 [JIT] Add property support for ScriptModules (#42390)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42390

**Summary**
This commit extends support for properties to include
ScriptModules.

**Test Plan**
This commit adds a unit test that has a ScriptModule with
a user-defined property.

`python test/test_jit_py3.py TestScriptPy3.test_module_properties`

Test Plan: Imported from OSS

Reviewed By: eellison, mannatsingh

Differential Revision: D22880298

Pulled By: SplitInfinity

fbshipit-source-id: 74f6cb80f716084339e2151ca25092b6341a1560
2020-09-14 18:49:21 -07:00
Guilherme Leobas
cdf5e2ae86 add typing annotations for a few torch.utils.* modules (#43806)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/43431. Depends on [gh-43862](https://github.com/pytorch/pytorch/pull/43862) (EDIT: now merged)

Modules:
- torch.utils.mkldnn
- torch.utils.mobile_optimizer
- torch.utils.bundled_inputs

Pull Request resolved: https://github.com/pytorch/pytorch/pull/43806

Reviewed By: gmagogsfm

Differential Revision: D23635151

Pulled By: SplitInfinity

fbshipit-source-id: a85b75a7927dde6cc55bcb361f8ff601ffb0b2a1
2020-09-11 10:20:55 -07:00
Meghan Lele
89ac30afb8 [JIT] Propagate type sharing setting to submodule compilation (#44226)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44226

**Summary**
At present, the `share_types` argument to `create_script_module` is used
to decide whether to reuse a previously created type for a top-level
module that has not yet been compiled. However, that setting does not apply
to the compilation of submodules of the top-level module; types are
still reused if possible.

This commit modifies `create_script_module` so that the `share_types`
flag is honoured during submodule compilation as well.

**Test Plan**
This commit adds a unit test to `TestTypeSharing` that checks that
submodule types are not shared or reused when `share_types` is set to
`False`.

**Fixes**
This commit fixes #43605.

Test Plan: Imported from OSS

Reviewed By: eellison

Differential Revision: D23602371

Pulled By: SplitInfinity

fbshipit-source-id: b909b8b6abbe3b4cb9be8319ac263ade90e83bd3
2020-09-09 20:06:35 -07:00
Meghan Lele
caf23d110f [JIT] Unshare types for modules that define() in __init__ (#44233)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44233

**Summary**
By default, scripting tries to share concrete and JIT types across
compilations. However, this can lead to incorrect results if a module
extends `torch.jit.ScriptModule`, and injects instance variables into
methods defined using `define`.

This commit detects when this has happened and disables type sharing
for the compilation of the module that uses `define` in `__init__`.

**Test Plan**
This commit adds a test to TestTypeSharing that tests this scenario.

**Fixes**
This commit fixes #43580.

Test Plan: Imported from OSS

Reviewed By: bertmaher

Differential Revision: D23553870

Pulled By: SplitInfinity

fbshipit-source-id: d756e87fcf239befa0012998ce29eeb25728d3e1
2020-09-08 12:16:45 -07:00
Nikita Shulga
0c01f136f3 [BE] Use f-string in various Python functions (#44161)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/44161

Reviewed By: seemethere

Differential Revision: D23515874

Pulled By: malfet

fbshipit-source-id: 868cf65aedd58fce943c08f8e079e84e0a36df1f
2020-09-04 07:38:25 -07:00
Nikita Shulga
b60ffcdfdd Enable typechecks for torch.nn.quantized.modules.linear (#44154)
Summary:
Also import `Optional` directly from `typing` rather than from `_jit_internal`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44154

Reviewed By: seemethere

Differential Revision: D23511833

Pulled By: malfet

fbshipit-source-id: f78c5fd679c002b218e4d287a9e56fa198171981
2020-09-03 19:52:49 -07:00
Meghan Lele
7816d53798 [JIT] Add mypy type annotations for JIT (#43862)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/43862

Test Plan: Imported from OSS

Reviewed By: eellison

Differential Revision: D23491151

Pulled By: SplitInfinity

fbshipit-source-id: 88367b89896cf409bb9ac3db7490d6779efdc3a4
2020-09-03 15:09:24 -07:00
Meghan Lele
de672e874d [JIT] Improve error message for unsupported Optional types (#44054)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44054

**Summary**
This commit improves the error message that is printed when an
`Optional` type annotation with an unsupported contained type is
encountered. At present, the `Optional` is printed as-is, and
`Optional[T]` is syntatic sugar for `Union[T, None]`, so that is what
shows up in the error message and can be confusing. This commit modifies
the error message so that it prints `T` instead of `Union[T, None]`.

**Test Plan**
Continuous integration.

Example of old message:
```
AssertionError: Unsupported annotation typing.Union[typing.List, NoneType] could not be resolved.
```
Example of new message:
```
AssertionError: Unsupported annotation typing.Union[typing.List, NoneType] could not be resolved because typing.List could not be resolved.
```

**Fixes**
This commit fixes #42859.

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D23490365

Pulled By: SplitInfinity

fbshipit-source-id: 2aa9233718e78cf1ba3501ae11f5c6f0089e29cd
2020-09-03 11:55:06 -07:00
Bert Maher
33d51a9b32 Respect canFuseOn{CPU,GPU} in TE fuser (#43967)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/43967

Test Plan: Imported from OSS

Reviewed By: asuhan

Differential Revision: D23469048

Pulled By: bertmaher

fbshipit-source-id: 1005a7ae08974059ff9d467492caa3a388070eeb
2020-09-02 18:00:25 -07:00
Akihiro Nitta
f17d7a5556 Fix exception chaining in torch/ (#43836)
Summary:
## Motivation
Fixes https://github.com/pytorch/pytorch/issues/43770.

## Description of the change
This PR fixes exception chaining only in files under `torch/` where appropriate.
To fix exception chaining, I used either:
1. `raise new_exception from old_exception` where `new_exception` itself seems not descriptive enough to debug or `old_exception` delivers valuable information.
2. `raise new_exception from None` where raising both of `new_exception` and `old_exception` seems a bit noisy and redundant.
I subjectively chose which one to use from the above options.

## List of lines containing raise in except clause:
I wrote [this simple script](https://gist.github.com/akihironitta/4223c1b32404b36c1b349d70c4c93b4d) using [ast](https://docs.python.org/3.8/library/ast.html#module-ast) to list lines where `raise`ing in `except` clause.

- [x] 000739c31a/torch/jit/annotations.py (L35)
- [x] 000739c31a/torch/jit/annotations.py (L150)
- [x] 000739c31a/torch/jit/annotations.py (L158)
- [x] 000739c31a/torch/jit/annotations.py (L231)
- [x] 000739c31a/torch/jit/_trace.py (L432)
- [x] 000739c31a/torch/nn/utils/prune.py (L192)
- [x] 000739c31a/torch/cuda/nvtx.py (L7)
- [x] 000739c31a/torch/utils/cpp_extension.py (L1537)
- [x] 000739c31a/torch/utils/tensorboard/_pytorch_graph.py (L292)
- [x] 000739c31a/torch/utils/data/dataloader.py (L835)
- [x] 000739c31a/torch/utils/data/dataloader.py (L849)
- [x] 000739c31a/torch/utils/data/dataloader.py (L856)
- [x] 000739c31a/torch/testing/_internal/common_utils.py (L186)
- [x] 000739c31a/torch/testing/_internal/common_utils.py (L189)
- [x] 000739c31a/torch/testing/_internal/common_utils.py (L424)
- [x] 000739c31a/torch/testing/_internal/common_utils.py (L1279)
- [x] 000739c31a/torch/testing/_internal/common_utils.py (L1283)
- [x] 000739c31a/torch/testing/_internal/common_utils.py (L1356)
- [x] 000739c31a/torch/testing/_internal/common_utils.py (L1388)
- [x] 000739c31a/torch/testing/_internal/common_utils.py (L1391)
- [ ] 000739c31a/torch/testing/_internal/common_utils.py (L1412)
- [x] 000739c31a/torch/testing/_internal/codegen/random_topo_test.py (L310)
- [x] 000739c31a/torch/testing/_internal/codegen/random_topo_test.py (L329)
- [x] 000739c31a/torch/testing/_internal/codegen/random_topo_test.py (L332)
- [x] 000739c31a/torch/testing/_internal/jit_utils.py (L183)
- [x] 000739c31a/torch/testing/_internal/common_nn.py (L4789)
- [x] 000739c31a/torch/onnx/utils.py (L367)
- [x] 000739c31a/torch/onnx/utils.py (L659)
- [x] 000739c31a/torch/onnx/utils.py (L892)
- [x] 000739c31a/torch/onnx/utils.py (L897)
- [x] 000739c31a/torch/serialization.py (L108)
- [x] 000739c31a/torch/serialization.py (L754)
- [x] 000739c31a/torch/distributed/rpc/_testing/faulty_agent_backend_registry.py (L76)
- [x] 000739c31a/torch/distributed/rpc/backend_registry.py (L260)
- [x] 000739c31a/torch/distributed/distributed_c10d.py (L184)
- [x] 000739c31a/torch/_utils_internal.py (L57)
- [x] 000739c31a/torch/hub.py (L494)
- [x] 000739c31a/torch/contrib/_tensorboard_vis.py (L16)
- [x] 000739c31a/torch/distributions/lowrank_multivariate_normal.py (L100)
- [x] 000739c31a/torch/distributions/constraint_registry.py (L142)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/43836

Reviewed By: ailzhang

Differential Revision: D23431212

Pulled By: malfet

fbshipit-source-id: 5f7f41b391164a5ad0efc06e55cd58c23408a921
2020-08-31 20:26:23 -07:00
Dmytro Dzhulgakov
47e489b135 Make ExtraFilesMap return bytes instead of str (#43241)
Summary:
In case we want to store binary files using `ScriptModule.save(..., _extra_files=...)` functionality. With python3 we can just use bytes only and not bother about it.

I had to do a copy-pasta from pybind sources, maybe we should upstream it, but it'd mean adding a bunch of template arguments to `bind_map` which is a bind untidy.

Let me know if there's a better place to park this function (it seems to be the only invocation of `bind_map` so I put it in the same file)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/43241

Reviewed By: zdevito

Differential Revision: D23205244

Pulled By: dzhulgakov

fbshipit-source-id: 8f291eb4294945fe1c581c620d48ba2e81b3dd9c
2020-08-28 19:11:33 -07:00
Meghan Lele
87d7c362b1 [JIT] Add JIT support for torch.no_grad (#41371)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41371

**Summary**
This commit enables the use of `torch.no_grad()` in a with item of a
with statement within JIT. Note that the use of this context manager as
a decorator is not supported.

**Test Plan**
This commit adds a test case to the existing with statements tests for
`torch.no_grad()`.

**Fixes**
This commit fixes #40259.

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D22649519

Pulled By: SplitInfinity

fbshipit-source-id: 7fa675d04835377666dfd0ca4e6bc393dc541ab9
2020-08-27 15:32:57 -07:00
Ralf Gommers
573940f8d7 Fix type annotation errors in torch.functional (#43446)
Summary:
Closes gh-42968

Pull Request resolved: https://github.com/pytorch/pytorch/pull/43446

Reviewed By: albanD

Differential Revision: D23280962

Pulled By: malfet

fbshipit-source-id: de5386a95a20ecc814c39cbec3e4252112340b3a
2020-08-26 08:27:59 -07:00
Ralf Gommers
b430347a60 Address JIT/Mypy issue with torch._VF (#43454)
Summary:
- `torch._VF` is a hack to work around the lack of support for `torch.functional` in the JIT
- that hack hides `torch._VF` functions from Mypy
- could be worked around by re-introducing a stub file for `torch.functional`, but that's undesirable
- so instead try to make both happy at the same time: the type ignore comments are needed for Mypy, and don't seem to affect the JIT after excluding them from the `get_type_line()` logic

Encountered this issue while trying to make `mypy` run on `torch/functional.py` in gh-43446.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/43454

Reviewed By: glaringlee

Differential Revision: D23305579

Pulled By: malfet

fbshipit-source-id: 50e490693c1e53054927b57fd9acc7dca57e88ca
2020-08-25 09:23:54 -07:00
Yanan Cao
35a36c1280 Implement JIT Enum type serialization and deserialization (#43460)
Summary:
[Re-review tips: nothing changed other than a type in python_ir.cpp to fix a windows build failure]

Adds code printing for enum type
Enhance enum type to include all contained enum names and values
Adds code parsing for enum type in deserialization
Enabled serialization/deserialization test in most TestCases. (With a few dangling issues to be addressed in later PRs to avoid this PR grows too large)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/43460

Reviewed By: albanD

Differential Revision: D23284929

Pulled By: gmagogsfm

fbshipit-source-id: e3e81d6106f18b7337ac3ff5cd1eeaff854904f3
2020-08-24 12:04:31 -07:00
Pavel Belevich
d94b10a832 Revert D23223281: Add Enum TorchScript serialization and deserialization support
Test Plan: revert-hammer

Differential Revision:
D23223281 (f269fb83c1)

Original commit changeset: 716d1866b777

fbshipit-source-id: da1ad8387b7d7aad9ff69e1ebeb5cd0b9394c2df
2020-08-22 02:38:12 -07:00
Yanan Cao
f269fb83c1 Add Enum TorchScript serialization and deserialization support (#42963)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42963

* Adds code printing for enum type
* Enhance enum type to include all contained enum names and values
* Adds code parsing for enum type in deserialization
* Enabled serialization/deserialization test in most TestCases. (With a few dangling issues to be addressed in later PRs to avoid this PR grows too large)

Test Plan: Imported from OSS

Reviewed By: SplitInfinity

Differential Revision: D23223281

Pulled By: gmagogsfm

fbshipit-source-id: 716d1866b7770dfb7bd8515548cfe7dc4c4585f7
2020-08-21 18:13:27 -07:00
Yanan Cao
0bd35de30e Add Enum convert back to Python object support (#43121)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/43121

Test Plan: Imported from OSS

Reviewed By: SplitInfinity

Differential Revision: D23222628

Pulled By: gmagogsfm

fbshipit-source-id: 6850c56ced5b52943a47f627b2d1963cc9239408
2020-08-21 10:36:51 -07:00
Yuxin Wu
825ec18eed [jit] better error message (#43093)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43093

without this it's hard to tell which module is going wrong

Test Plan:
```
> TypeError:
> 'numpy.int64' object in attribute 'Linear.in_features' is not a valid constant.
> Valid constants are:
> 1. a nn.ModuleList
> 2. a value of type {bool, float, int, str, NoneType, torch.device, torch.layout, torch.dtype}
> 3. a list or tuple of (2)
```

Reviewed By: eellison

Differential Revision: D23148516

fbshipit-source-id: b86296cdeb7b47c9fd69b5cfa479914c58ef02e6
2020-08-17 14:57:56 -07:00
Meghan Lele
fcc10d75e1 [JIT] Add property support to TorchScript classes (#42389)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42389

**Summary**
This commit adds support for properties to TorchScript classes,
specifically for getters and setters. They are implemented essentially
as pointers to the methods that the corresponding decorators decorate,
which are treated like regular class methods. Deleters for properties
are considered to be out of scope (and probably useless for TorchScript
anyway).

**Test Plan**
This commit adds a unit test for a class with a property that has both
getter and setter and one that has only a getter.

`python test/test_jit.py TestClassType.test_properties`

Test Plan: Imported from OSS

Reviewed By: eellison, ppwwyyxx

Differential Revision: D22880232

Pulled By: SplitInfinity

fbshipit-source-id: 4828640f4234cb3b0d4f3da4872a75fbf519e5b0
2020-08-14 12:56:57 -07:00
Meghan Lele
eba35025e0 [JIT] Exclude staticmethods from TS class compilation (#42611)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42611

**Summary**
This commit modifies the Python frontend to ignore static functions on
Torchscript classes when compiling them. They are currently included
along with methods, which causes the first argument of the
staticfunction to be unconditionally inferred to be of the type of the
class it belongs to (regardless of how it is annotated or whether it is
annotated at all). This can lead to compilation errors depending on
how that argument is used in the body of the function.

Static functions are instead imported and scripted as if they were
standalone functions.

**Test Plan**
This commit augments the unit test for static methods in `test_class_types.py`
to test that static functions can call each other and the class
constructor.

**Fixes**
This commit fixes #39308.

Test Plan: Imported from OSS

Reviewed By: ZolotukhinM

Differential Revision: D22958163

Pulled By: SplitInfinity

fbshipit-source-id: 45c3c372792299e6e5288e1dbb727291e977a2af
2020-08-07 11:22:04 -07:00
Mike Ruberry
9c8021c0b1 Adds torch.linalg namespace (#42664)
Summary:
This PR adds the `torch.linalg` namespace as part of our continued effort to be more compatible with NumPy. The namespace is tested by adding a single function, `torch.linalg.outer`, and testing it in a new test suite, test_linalg.py. It follows the same pattern that https://github.com/pytorch/pytorch/pull/41911, which added the `torch.fft` namespace, did.

Future PRs will likely:

- add more functions to torch.linalg
- expand the testing done in test_linalg.py, including legacy functions, like torch.ger
- deprecate existing linalg functions outside of `torch.linalg` in preference to the new namespace

Pull Request resolved: https://github.com/pytorch/pytorch/pull/42664

Reviewed By: ngimel

Differential Revision: D22991019

Pulled By: mruberry

fbshipit-source-id: 39258d9b116a916817b3588f160b141f956e5d0b
2020-08-07 10:18:30 -07:00
Mike Ruberry
ccfce9d4a9 Adds fft namespace (#41911)
Summary:
This PR creates a new namespace, torch.fft (torch::fft) and puts a single function, fft, in it. This function is analogous to is a simplified version of NumPy's [numpy.fft.fft](https://numpy.org/doc/1.18/reference/generated/numpy.fft.fft.html?highlight=fft#numpy.fft.fft) that accepts no optional arguments. It is intended to demonstrate how to add and document functions in the namespace, and is not intended to deprecate the existing torch.fft function.

Adding this namespace was complicated by the existence of the torch.fft function in Python. Creating a torch.fft Python module makes this name ambiguous: does it refer to a function or module? If the JIT didn't exist, a solution to this problem would have been to make torch.fft refer to a callable class that mimicked both the function and module. The JIT, however, cannot understand this pattern. As a workaround it's required to explicitly `import torch.fft` to access the torch.fft.fft function in Python:

```
import torch.fft

t = torch.randn(128, dtype=torch.cdouble)
torch.fft.fft(t)
```

See https://github.com/pytorch/pytorch/issues/42175 for future work. Another possible future PR is to get the JIT to understand torch.fft as a callable class so it need not be imported explicitly to be used.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41911

Reviewed By: glaringlee

Differential Revision: D22941894

Pulled By: mruberry

fbshipit-source-id: c8e0b44cbe90d21e998ca3832cf3a533f28dbe8d
2020-08-06 00:20:50 -07:00
Yanan Cao
5d7c3f92b9 Issue warning instead of error when parsing Enum while enum support is not enabled (#42623)
Summary:
Returnning None rather than error matches previous behavior better.

Fixes https://fburl.com/yrrvtes3

Pull Request resolved: https://github.com/pytorch/pytorch/pull/42623

Reviewed By: ajaech

Differential Revision: D22957498

Pulled By: gmagogsfm

fbshipit-source-id: 61dabc6d23ad44e75bd35d837768bdb6fe71eece
2020-08-05 17:55:29 -07:00
Meghan Lele
29700c0092 [JIT] Fix torch.jit.is_tracing() (#42486)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42486

**Summary**
This commit fixes a small bug in which `torch.jit.is_tracing()` returns
`torch._C.is_tracing`, the function object, instead of calling the
function and returning the result.

**Test Plan**
Continuous integration?

**Fixes**
This commit fixes #42448.

Test Plan: Imported from OSS

Reviewed By: bertmaher

Differential Revision: D22911062

Pulled By: SplitInfinity

fbshipit-source-id: b94eca0c1c65ca6f22acc6c5542af397f2dc37f0
2020-08-04 16:57:36 -07:00
Yanan Cao
bdcf320bed Support custom exception message (#41907)
Summary:
Raise and assert used to have a hard-coded error message "Exception". User provided error message was ignored. This PR adds support to represent user's error message in TorchScript.

This breaks backward compatibility because now we actually need to script the user's error message, which can potentially contain unscriptable expressions. Such programs can break when scripting, but saved models can still continue to work.

Increased an op count in test_mobile_optimizer.py because now we need aten::format to form the actual exception message.

This is built upon an WIP PR:  https://github.com/pytorch/pytorch/pull/34112 by driazati

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41907

Reviewed By: ngimel

Differential Revision: D22778301

Pulled By: gmagogsfm

fbshipit-source-id: 2b94f0db4ae9fe70c4cd03f4048e519ea96323ad
2020-08-01 13:03:45 -07:00
Elias Ellison
5ff54ff4ff import freeze (#42319)
Summary:
torch.jit.freeze was broken with https://github.com/pytorch/pytorch/pull/41154/files#diff-9084cd464651f7fa1ff030d2edd9eb55R1

Pull Request resolved: https://github.com/pytorch/pytorch/pull/42319

Reviewed By: ZolotukhinM

Differential Revision: D22845476

Pulled By: eellison

fbshipit-source-id: bc9e50678d0e0ffca4062854ccc71bbef2e1a97b
2020-07-30 13:00:11 -07:00
mattip
b7bda236d1 DOC: split quantization.rst into smaller pieces (#41321)
Summary:
xref gh-38010 and gh-38011.

After this PR, there should be only two warnings:
```
pytorch/docs/source/index.rst:65: WARNING: toctree contains reference to nonexisting \
      document 'torchvision/index'
WARNING: autodoc: failed to import class 'tensorboard.writer.SummaryWriter' from module \
     'torch.utils'; the following exception was raised:
No module named 'tensorboard'
```

If tensorboard and torchvision are prerequisites to building docs, they should be added to the `requirements.txt`.

As for breaking up quantization into smaller pieces: I split out the list of supported operations and the list of modules to separate documents. I think this makes the page flow better, makes it much "lighter" in terms of page cost, and also removes some warnings since the same class names appear in multiple sub-modules.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41321

Reviewed By: ngimel

Differential Revision: D22753099

Pulled By: mruberry

fbshipit-source-id: d504787fcf1104a0b6e3d1c12747ec53450841da
2020-07-25 23:59:40 -07:00
Taras Savchyn
26bbbeaea4 [DOCS] Fix the docs for the inputs arg of trace_module func (#41586)
Summary:
Fix the docs for the `inputs` arg of `trace_module` func.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41586

Reviewed By: ezyang

Differential Revision: D22598453

Pulled By: zou3519

fbshipit-source-id: c2d182238b5a51f6d0a7d0683372d72a239146c5
2020-07-20 10:57:56 -07:00
wudenggang
9600ed9af3 typo fixes (#41632)
Summary:
typo fixes

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41632

Reviewed By: ezyang

Differential Revision: D22617827

Pulled By: mrshenli

fbshipit-source-id: c2bfcb7cc36913a8dd32f13fc9adc3aa0a9b682f
2020-07-20 07:23:00 -07:00
Yanan Cao
4a3aad354a [1/N] Implement Enum JIT support (#41390)
Summary:
* Add EnumType and AnyEnumType as first-class jit type
* Add Enum-typed IValue
* Enhanced aten::eq to support Enum

Supported:
Enum-typed function targuments
using Enum type and comparing them

TODO:
Add PyThon sugared value for Enum
Support getting name/value attrs of enums
Support Enum-typed return values
Support enum values of different types in same Enum class
Support serialization and deserialization

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41390

Reviewed By: eellison

Differential Revision: D22524388

Pulled By: gmagogsfm

fbshipit-source-id: 1627154a64e752d8457cd53270f3d14aea4b1150
2020-07-18 22:15:06 -07:00