Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34774
This PR provides pybind11's `type_caster<at::Generator>` that allows mapping `at::Generator` instance returned from user-defined method to python `torch::Generator`, defined as `THPGenerator ` c++ class.
This allows 1) defining custom RNG in c++ extension 2) using custom RNG in python code.
`TestRNGExtension.test_rng` shows how to use custom RNG defined in `rng_extension.cpp`
Test Plan: Imported from OSS
Differential Revision: D20549451
Pulled By: pbelevich
fbshipit-source-id: 312a6deccf8228f7f60695bbf95834620d52f5eb
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34468
This PR prepares `at::Generator` for pybind11's `type_caster<at::Generator>` which is required to implement custom RNG in python. The following changes are done:
1. `at::Generator` was moved to `c10::GeneratorImpl` (similar to `c10::TensorImpl`)
2. `at::Generator` was recreated as a holder of `std::shared_ptr<c10::GeneratorImpl>` (similar to `at::Tensor` that holds `c10::intrusive_ptr<c10::TensorImpl>`)
3. Most of `at::Generator*` usages were replaced with `at::Generator`
TBD: replacing `Generator generator = nullptr` with `{}` requires JIT changes(adding Generator to IValue?)
Differential Revision: D20549420
Pulled By: pbelevich
fbshipit-source-id: 4c92a40eab8f033b359bb6c93f4cd84b07ee8d4e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29143
THP_CORE macro is a very old macro that appeared to have served
two purposes:
1. The torch-python equivalent of CAFFE2_BUILD_MAIN_LIB, to toggle
symbol visibility headers
2. Some sort of ad hoc way of hiding certain definitions from headers
so external clients can't get at them.
It did (2) in a very confusing manner, because we set THP_CORE in both
torch and torch-python (it shouldn't do anything in torch). In this
PR I just get rid of use case (2) entirely (so everything shows up in
headers all the time), and then redo (1) using a new THP_BUILD_MAIN_LIB
macro. This cleans up some of the macro definitions and makes my life
easier for working on #27215.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D18309594
Pulled By: ezyang
fbshipit-source-id: adcb6d7cb387cd818480137e2b94e5e761dbfefc
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.
I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.
I used the following script to do the canonicalization:
```
import subprocess
import re
import os.path
files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
for fn in files:
if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
continue
if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
continue
with open(fn, 'r') as f:
c = f.read()
def fmt(p):
return "#include <{}>".format(p)
def repl(m):
p = m.group(1)
if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
return fmt(p)
if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
return fmt(p)
for root in ["aten/src", "torch/lib", ""]:
for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
new_p = os.path.relpath(os.path.join(bad_root, p), root)
if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
return fmt(new_p)
print("ERROR: ", fn, p)
return m.group(0)
new_c = re.sub(r'#include "([^"]+)"', repl, c)
if new_c != c:
print(fn)
with open(fn, 'w') as f:
f.write(new_c)
```
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849
Reviewed By: dzhulgakov
Differential Revision: D13363445
Pulled By: ezyang
fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
- Remove some uses of mega-header THP.h
- Use HANDLE_TH_ERRORS in functions that may throw
- Move NumPy includes to common header
- Delete unused allocator
* Bind cauchy_, exponential_, normal_, uniform_ functions to THPVariable.
Also changes the error messages around Generator parser; previously, you'd get an error
like: torch._C.Generator is not a torch.Generator; now the check is proper but returns
that only None is supported.
* Support passing Generators to ATen Variable-bound methods.
This involves changing THPGenerator to have an at::Generator rather than a THGenerator.
TH getRNGState, setRNGState are still called directly because they are not bound from ATen yet;
they should probably be on the Generators and return (opaque) GenerateState objects.
* Fix default values.
* Properly use THRandom_initialSeed.
* update standard gamma to use new default generator.
ATen has it's own default CPU RNG. Use this as the default in PyTorch so
that random functions called through ATen have the same behavior as
random functions called through TensorMethods