Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46383
The old `USE_METAL` is actually being used by Caffe2. Here we introduce a new macro to enable metal in pytorch.
ghstack-source-id: 114499392
Test Plan:
- Circle CI
- The Person Segmentation model works
Reviewed By: linbinyu
Differential Revision: D24322018
fbshipit-source-id: 4e5548afba426b49f314366d89b18ba0c7e745ca
Summary:
We are trying to build libtorch statically (BUILD_SHARED_LIBS=OFF) then link it into a DLL. Our setup hits the infinite loop mentioned [here](54c05fa34e/torch/csrc/autograd/engine.cpp (L228)) because we build with `BUILD_SHARED_LIBS=OFF` but still link it all into a DLL at the end of the day.
This PR fixes the issue by changing the condition to guard on which windows runtime the build links against using the `CAFFE2_USE_MSVC_STATIC_RUNTIME` flag. `CAFFE2_USE_MSVC_STATIC_RUNTIME` defaults to ON when `BUILD_SHARED_LIBS=OFF`, so backwards compatibility is maintained.
I'm not entirely confident I understand the subtleties of the windows runtime versus linking setup, but this setup works for us and should not affect the existing builds.
Fixes https://github.com/pytorch/pytorch/issues/44470
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43532
Reviewed By: mrshenli
Differential Revision: D24053767
Pulled By: albanD
fbshipit-source-id: 1127fefe5104d302a4fc083106d4e9f48e50add8
Summary:
According to [documentation](https://github.com/pytorch/pytorch/blob/master/tools/setup_helpers/cmake.py#L265), only options starts with `BUILD_` / `USE_` / `CMAKE_` in `CMakeLists.txt` can be imported by environment variables.
---
This diff is originally intended to enable `c++` source coverage with `CircleCI` and `codecov.io`, but we will finish it in the future. You can find the related information in the diff history. Following is the originally procedur:
Based on [this pull request](1bda5e480c), life becomes much easier for this time.
1.in `build.sh`
- Enable coverage builld option for c++
- `apt-get install lcov`
2.in `test.sh`
- run `lcov`
3.in `pytorch-job-specs.yml`
- copy coverage.info to `test/` folder and upload it to codecov.io
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43999
Test Plan: Test on github
Reviewed By: malfet
Differential Revision: D23464656
Pulled By: scintiller
fbshipit-source-id: b2365691f04681d25ba5c00293fbcafe8e8e0745
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43564
Static dispatch was originally introduced for mobile selective build.
Since we have added selective build support for dynamic dispatch and
tested it in FB production for months, we can deprecate static dispatch
to reduce the complexity of the codebase.
Test Plan: Imported from OSS
Reviewed By: ezyang
Differential Revision: D23324452
Pulled By: ljk53
fbshipit-source-id: d2970257616a8c6337f90249076fca1ae93090c7
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43154
Adds the build flag `BUILD_MOBILE_AUTOGRAD` which toggles whether autograd files should be included for a PyTorch mobile build (default off).
ghstack-source-id: 110369406
Test Plan: CI
Reviewed By: ljk53
Differential Revision: D23061913
fbshipit-source-id: bc3d6683ab17f158990d83e4fae0a011d5adeca1
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41103
add a CLANG_CODE_COVERAGE option to CMakeList. If the option is ON, add code coverage needed compile flags.
Test Plan:
Clone pytorch source code to local, modified these changes and builded it with `CLANG_CODE_COVERAGE ON` and `BUILD_TESTS ON`. Run a manual test and attach code coverage report.
{F243609020}
Reviewed By: malfet
Differential Revision: D22422513
fbshipit-source-id: 27a31395c31b5b5f4b72523954722771d8f61080
Summary:
This PR contains the initial version of Vulkan (GPU) Backend integration.
The primary target environment is Android, but the desktop build is also supported.
## CMake
Introducing three cmake options:
USE_VULKAN:
The main switch, if it is off, all other options do not affect.
USE_VULKAN_WRAPPER:
ON - Vulkan will be used loading it at runtime as "libvulkan.so" using libdl, every function call is wrapped in vulkan_wrapper.h.
OFF - linking with libvulkan.so directly
USE_VULKAN_SHADERC_RUNTIME:
ON - Shader compilation library will be linked, and shaders will be compiled runtime.
OFF - Shaders will be precompiled and shader compilation library is not included.
## Codegen
if `USE_VULKAN_SHADERC_RUNTIME` is ON:
Shaders precompilation () starts in cmake/VulkanCodegen.cmake, which calls `aten/src/ATen/native/vulkan/gen_glsl.py` or `aten/src/ATen/native/vulkan/gen_spv.py` to include shaders source or SPIR-V bytecode inside binary as uint32_t array in spv.h,spv.cpp.
if `USE_VULKAN_SHADERC_RUNTIME` is OFF:
The source of shaders is included as `glsl.h`,`glsl.cpp`.
All codegen results happen in the build directory.
## Build dependencies
cmake/Dependencies.cmake
If the target platform is Android - vulkan library, headers, Vulkan wrapper will be used from ANDROID_NDK.
Desktop build requires the VULKAN_SDK environment variable, and all vulkan dependencies will be used from it.
(Desktop build was tested only on Linux).
## Pytorch integration:
Adding 'Vulkan" as new Backend, DispatchKey, DeviceType.
We are using Strided layout without supporting strides at the moment, but we plan to support them in the future.
Using OpaqueTensorImpl where OpaqueHandle is copyable VulkanTensor,
more details in comments in `aten/src/ATen/native/vulkan/Vulkan.h`
Main code location: `aten/src/ATen/native/vulkan`
`aten/src/ATen/native/vulkan/VulkanAten.cpp` - connection link between ATen and Vulkan api (Vulkan.h) that converts at::Tensor to VulkanTensor.
`aten/src/ATen/native/Vulkan/Vulkan.h` - Vulkan API that contains VulkanTensor representation and functions to work with it. Plan to expose it for clients to be able to write their own Vulkan Ops.
`aten/src/ATen/native/vulkan/VulkanOps.cpp` - Vulkan Operations Implementations that uses Vulkan.h API
## GLSL shaders
Located in `aten/src/ATen/native/vulkan/glsl` as *.glsl files.
All shaders use Vulkan specialized constants for workgroup sizes with ids 1, 2, 3
## Supported operations
Code point:
conv2d no-groups
conv2d depthwise
addmm
upsample nearest 2d
clamp
hardtanh
## Testing
`aten/src/ATen/test/vulkan_test.cpp` - contains tests for
copy from CPU to Vulkan and back
all supported operations
Desktop builds supported, and testing can be done on a desktop that has Vulkan supported GPU or with installed software implementation of Vulkan, like https://github.com/google/swiftshader
## Vulkan execution
The initial implementation is trivial and waits every operator's execution.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36491
Differential Revision: D21696709
Pulled By: IvanKobzarev
fbshipit-source-id: da3e5a770b1a1995e9465d7e81963e7de56217fa
Summary:
We open sourced the FakeLowp ops as a reference implementation of fp16 ops. This PR makes it buildable.
```
USE_CUDA=0 USE_ROCM=0 USE_FAKELOWP=ON python setup.py install
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36170
Test Plan:
Build Onnxifi library in Glow.
```
cp ${GLOW}/build/lib/Onnxifi/libonnxifi-glow.so ${MY_PATH}/ibonnxifi.so
LD_LIBRARY_PATH=${MY_PATH}/ibonnxifi.so python pytorch/caffe2/python/fakelowp/test_sls_nnpi_fp16.py
```
It doesn't run successfully right now because we need to open source the glow gflags and some other ops like `FbgemmPack`.
Reviewed By: houseroad
Differential Revision: D20980681
Pulled By: yinghai
fbshipit-source-id: 6dd31883a985850a77261bcc527029479bbc303f
Summary:
In Summary specify whether CUDA code is compiled with separate compilation enabled
Also, correctly handle space-separate TORCH_NVCC_FLAGS when adding them to NVCC_CUDA_FLAGS
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35726
Test Plan: CI + local build with TORCH_NVCC_FLAGS set to "-Xfatbin -compress-all"
Differential Revision: D20830885
Pulled By: malfet
fbshipit-source-id: 0e0ecab4a97b6c8662a2c4bfc817857da9f32201
Summary:
Ignore mixed upper-case/lower-case style for now
Fix space between function and its arguments violation
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35574
Test Plan: CI
Differential Revision: D20712969
Pulled By: malfet
fbshipit-source-id: 0012d430aed916b4518599a0b535e82d15721f78
Summary:
Same to `else`, `endif` and `elseif`.
Also prefer lowercase over uppercase ones
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35343
Test Plan: None at all
Differential Revision: D20638789
Pulled By: malfet
fbshipit-source-id: 8058075693185e66f5dda7b825b725e139d0d000
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33318
### Summary
Recently, we have a [discussion](https://discuss.pytorch.org/t/libtorch-on-watchos/69073/14) in the forum about watchOS. This PR adds the support for building watchOS libraries.
### Test Plan
- `BUILD_PYTORCH_MOBILE=1 IOS_PLATFORM=WATCHOS ./scripts/build_ios.sh`
Test Plan: Imported from OSS
Differential Revision: D19896534
Pulled By: xta0
fbshipit-source-id: 7b9286475e895d9fefd998246e7090ac92c4c9b6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31116
Changelist:
- remove BUILD_NAMEDTENSOR macro
- remove torch._C._BUILD_NAMEDTENSOR
- remove all python behavior that relies on torch._C._BUILD_NAMEDTENSOR
Future:
- In the next diff, I will remove all usages of
ATen/core/EnableNamedTensor.h since that header doesn't do anything
anymore
- After that, we'll be done with the BUILD_NAMEDTENSOR removal.
Test Plan: - run CI
Differential Revision: D18934951
Pulled By: zou3519
fbshipit-source-id: 0a0df0f1f0470d0a01c495579333a2835aac9f5d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30144
Create script to produce libtorch that only contains ops needed by specific
models. Developers can use this workflow to further optimize mobile build size.
Need keep a dummy stub for unused (stripped) ops because some JIT side
logic requires certain function schemas to be existed in the JIT op
registry.
Test Steps:
1. Build "dump_operator_names" binary and use it to dump root ops needed
by a specific model:
```
build/bin/dump_operator_names --model=mobilenetv2.pk --output=mobilenetv2.yaml
```
2. The MobileNetV2 model should use the following ops:
```
- aten::t
- aten::dropout
- aten::mean.dim
- aten::add.Tensor
- prim::ListConstruct
- aten::addmm
- aten::_convolution
- aten::batch_norm
- aten::hardtanh_
- aten::mm
```
NOTE that for some reason it outputs "aten::addmm" but actually uses "aten::mm".
You need fix it manually for now.
3. Run custom build script locally (use Android as an example):
```
SELECTED_OP_LIST=mobilenetv2.yaml scripts/build_pytorch_android.sh armeabi-v7a
```
4. Checkout demo app that uses locally built library instead of
downloading from jcenter repo:
```
git clone --single-branch --branch custom_build git@github.com:ljk53/android-demo-app.git
```
5. Copy locally built libraries to demo app folder:
```
find ${HOME}/src/pytorch/android -name '*.aar' -exec cp {} ${HOME}/src/android-demo-app/HelloWorldApp/app/libs/ \;
```
6. Build demo app with locally built libtorch:
```
cd ${HOME}/src/android-demo-app/HelloWorldApp
./gradlew clean && ./gradlew assembleDebug
```
7. Install and run the demo app.
In-APK arm-v7 libpytorch_jni.so build size reduced from 5.5M to 2.9M.
Test Plan: Imported from OSS
Differential Revision: D18612127
Pulled By: ljk53
fbshipit-source-id: fa8d5e1d3259143c7346abd1c862773be8c7e29a
Summary:
- Add a "BUILD_JNI" option that enables building PyTorch JNI bindings and
fbjni. This is off by default because it adds a dependency on jni.h.
- Update to the latest fbjni so we can inhibit building its tests,
because they depend on gtest.
- Set JAVA_HOME and BUILD_JNI in Linux binary build configurations if we
can find jni.h in Docker.
Test Plan:
- Built on dev server.
- Verified that libpytorch_jni links after libtorch when both are built
in a parallel build.
Differential Revision: D18536828
fbshipit-source-id: 19cb3be8298d3619352d02bb9446ab802c27ec66
Summary:
It doesn't seem to be used anywhere once down to CMake in this repo or any submodules
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25720
Differential Revision: D17225088
Pulled By: pietern
fbshipit-source-id: a24b080e6346a203b345e2b834fe095e3b9aece0
Summary:
MKL-DNN is the main library for computation when we use ideep device. It can use kernels implemented by different algorithms (including JIT, CBLAS, etc.) for computation. We add the "USE_MKLDNN_CBLAS" (default OFF) build option so that users can decide whether to use CBLAS computation methods or not.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19014
Differential Revision: D16094090
Pulled By: ezyang
fbshipit-source-id: 3f0b1d1a59a327ea0d1456e2752f2edd78d96ccc
Summary:
Currently the build system accepts USE_NAMEDTENSOR from the environment
variable and turns it into NAMEDTENSOR_ENABLED when passing to CMake.
This discrepancy does not seem necessary and complicates the build
system. The naming of this build option is also semantically incorrect
("BUILD_" vis-a-vis "USE_"). This commit eradicate this issue before it
is made into a stable release.
The support of NO_NAMEDTENSOR is also removed, since PyTorch has been
quite inconsistent about "NO_*" build options.
---
Note: All environment variables with their names starting with `BUILD_` are currently automatically passed to CMake with no need of an additional wrapper.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22360
Differential Revision: D16074509
Pulled By: zou3519
fbshipit-source-id: dc316287e26192118f3c99b945454bc50535b2ae
Summary:
This renames the CMake `caffe2` target to `torch`, as well as renaming `caffe2_gpu` to `torch_gpu` (and likewise for other gpu target variants). Many intermediate variables that don't manifest as artifacts of the build remain for now with the "caffe2" name; a complete purge of `caffe2` from CMake variable names is beyond the scope of this PR.
The shell `libtorch` library that had been introduced as a stopgap in https://github.com/pytorch/pytorch/issues/17783 is again flattened in this PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20774
Differential Revision: D15769965
Pulled By: kostmo
fbshipit-source-id: b86e8c410099f90be0468e30176207d3ad40c821
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15322
caffe2 mobile opengl code is not used, deleting it to reduce complications when we perform other changes
Reviewed By: Maratyszcza
Differential Revision: D13499943
fbshipit-source-id: 6479f6b9f50f08b5ae28f8f0bc4a1c4fc3f3c3c2
Summary:
Following up #11488 conversation with orionr
And our brief conversation at PTDC about ATen with soumith and apaszke
This PR enables a very slim build focused on ATen particularly without caffe2 and protobuf among other dependencies.
WIth this PR NimTorch tests pass fully, including AD, convolutions, wasm, etc.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12443
Reviewed By: mingzhe09088
Differential Revision: D10249313
Pulled By: orionr
fbshipit-source-id: 4f50503f08b79f59e7717fca2b4a1f420d908707
Summary:
All usages of the `ndarray` construct have now been guarded with `USE_NUMPY`. This eliminates the requirement of NumPy while building PyTorch from source.
Fixes#11757
Reviewed By: Yangqing
Differential Revision: D10031862
Pulled By: SsnL
fbshipit-source-id: 32d84fd770a7714d544e2ca1895a3d7c75b3d712
Summary:
This unifies our versions across setup.py, libtorch, and libcaffe2. CMake has a default version (bumped to 1.0.0) that can be overridden by setup.py. The versions are also printed as a part of cmake/Summary.cmake to make sure they are correct.
cc Yangqing ezyang soumith goldsborough pjh5
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12053
Differential Revision: D10041878
Pulled By: orionr
fbshipit-source-id: a98a01771f6c008d1016ab63ab785c3a88c3ddb0
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12046
This /sounds/ like a good idea in theory, but a feature
like this must be implemented very carefully, because if
you just plop the Git version in a header (that is included
by every file in your project, as macros.h is), then every
time you do a 'git pull', you will do a FULL rebuild, because
macros.h is going to regenerate to a new version and of course
you have to rebuild a source file if a header file changes.
I don't have time to implement it correctly, so I'm axing
the feature instead. If you want git versions in, e.g.,
nightly builds, please explicitly specify that when you feed
in the version.
Reviewed By: pjh5
Differential Revision: D10030556
fbshipit-source-id: 499d001c7b8ccd4ef15ce10dd6591c300c7df27d
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
Summary:
I am working on unifying the C++ extensions and C++ API, and one constraint for this is that we will want to be able to build the C++ API without cereal, since we won't want to ship it with the Python `torch` package.
For this I introduce a `TORCH_WITH_CEREAL` option to CMake. If on, the C++ API will be built with cereal and thus serialization support. If off, serialization functions will throw exceptions, but the library will otherwise still compile the same. __This option is on by default, so for regular C++ API users nothing will change__. However, from C++ extensions, we'll be able to turn it off. This effectively means we won't be searching for any cereal headers from C++ API headers, which wouldn't be installed in the Python package.
ebetica ezyang soumith
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11498
Differential Revision: D9784803
Pulled By: goldsborough
fbshipit-source-id: 5d0a1f2501993012d28cf3d730f45932b483abc4
Summary:
Add flags for LMDB and LevelDB, default `OFF`. These can be enabled with
```
USE_LMDB=1 USE_LEVELDB=1 python setup.py build_deps
```
Also add a flag to build Caffe2 ops, which is default `ON`. Disable with
```
NO_CAFFE2_OPS=1 python setup.py build_deps
```
cc Yangqing soumith pjh5 mingzhe09088
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11462
Reviewed By: soumith
Differential Revision: D9758156
Pulled By: orionr
fbshipit-source-id: 95fd206d72fdf44df54fc5d0aeab598bff900c63
Summary:
Now that we're building everything together, making all distributed flags conditional of USE_DISTRIBUTED being set.
cc pietern The controller you requested could not be found. cpuhrsch
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11221
Reviewed By: Yangqing
Differential Revision: D9664267
Pulled By: orionr
fbshipit-source-id: a296cda5746ad150028c97160f8beacba955ff73
Summary:
This completely removes BUILD_CAFFE2 from CMake. There is still a little bit of "full build" stuff in setup.py that enables USE_CUDNN and BUILD_PYTHON, but otherwise everything should be enabled for PyTorch as well as Caffe2. This gets us a lot closer to full unification.
cc mingzhe09088, pjh5, ezyang, smessmer, Yangqing
Pull Request resolved: https://github.com/pytorch/pytorch/pull/8338
Reviewed By: mingzhe09088
Differential Revision: D9600513
Pulled By: orionr
fbshipit-source-id: 9f6ca49df35b920d3439dcec56e7b26ad4768b7d