Summary:
Right now it is an unused alias to `torch_library` interface library
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38408
Differential Revision: D21598250
Pulled By: malfet
fbshipit-source-id: ec9a2446b94e7ea68298831212005c2c80bbc95c
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37721
Even though we disabled caffe2 test configs in Python, the BUILD_TEST
option was still building caffe2 test cpp binaries and various CI
configurations were running them (since they just run every binary in
`torch/test`).
This PR adds a caffe2-specific BUILD_TEST option (BUILD_CAFFE2_TEST),
which defaults to OFF, and gates the compilation of caffe2 test cpp
binaries under it.
Test Plan: Imported from OSS
Differential Revision: D21369541
Pulled By: suo
fbshipit-source-id: 669cff70c5b53f016e8e016bcb3a99bf3617e1f9
Summary:
This is useful for linux distributions when the ABI/API of libtorch has
been changed. The default SOVERSION is set to
"${TORCH_VERSION_MAJOR}.${TORCH_VERSION_MINOR}".
ezyang
But if the release strategy of pytorch/caffe2 involves avoiding breaking API/ABI changes to libtorch for minor/patch releases, then we can set `TORCH_SOVERSION` to simply `TORCH_VERSION_MAJOR`. Please confirm that.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37502
Differential Revision: D21303565
Pulled By: ezyang
fbshipit-source-id: 798f5ec7fc5f0431ff1a7f9e8e5d3a0d3b25bb22
Summary:
Ignore mixed upper-case/lower-case style for now
Fix space between function and its arguments violation
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35574
Test Plan: CI
Differential Revision: D20712969
Pulled By: malfet
fbshipit-source-id: 0012d430aed916b4518599a0b535e82d15721f78
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30915
Since we now have C++14, we don't need these c10::guts helpers anymore
ghstack-source-id: 95777609
Test Plan: waitforsandcastle
Differential Revision: D18869639
fbshipit-source-id: 97716f932297c64c6e814410ac47b444c33d4e2e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23590
This diff adds CPU% and Virtual Memory computation by default to AIBench when doing mobile remote run
Reviewed By: llyfacebook
Differential Revision: D16469619
fbshipit-source-id: 670f3549c830a36bc456a57f2ea668f9f82dd15a
Summary:
This renames the CMake `caffe2` target to `torch`, as well as renaming `caffe2_gpu` to `torch_gpu` (and likewise for other gpu target variants). Many intermediate variables that don't manifest as artifacts of the build remain for now with the "caffe2" name; a complete purge of `caffe2` from CMake variable names is beyond the scope of this PR.
The shell `libtorch` library that had been introduced as a stopgap in https://github.com/pytorch/pytorch/issues/17783 is again flattened in this PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20774
Differential Revision: D15769965
Pulled By: kostmo
fbshipit-source-id: b86e8c410099f90be0468e30176207d3ad40c821
Summary:
`scripts/build_windows.bat` is the original way to build caffe2 on Windows, but since it is merged into libtorch, the build scripts should be unified because they actually do the same thing except there are some different flags.
The follow-up is to add the tests. Looks like the CI job for caffe2 windows is defined [here](https://github.com/pytorch/ossci-job-dsl/blob/master/src/jobs/caffe2.groovy#L906). Could we make them a separate file, just like what we've done in `.jenkins/pytorch/win-build.sh`? There's a bunch of things we can do there, like using ninja and sccache to accelerate build.
cc orionr yf225
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18683
Differential Revision: D14730188
Pulled By: ezyang
fbshipit-source-id: ea287d7f213d66c49faac307250c31f9abeb0ebe
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17481
Usually, feature macros are either defined or undefined and checked accordingly.
C10_MOBILE was a weird special case that was always defined but either defined to 1 or to 0.
This caused a lot of confusion for me when trying to disable something from mobile build and it also disabled it
from the server build (because I was using ifdef). Also, I found a place in the existing code base that made
that wrong assumption and used the macro wrongly, see https://fburl.com/y4icohts
Reviewed By: dzhulgakov
Differential Revision: D14214825
fbshipit-source-id: f3a155b6d43d334e8839e2b2e3c40ed2c773eab6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15884
Codemod generated with clangr shard mode, 25 files per diff,
To eliminiate partially initialized Tensor, we split the initialization of local Tensor variables into two steps, first declare un uninitialized Tensor, and
call `ReinitializeTensor` to initialize it.
motivation: https://github.com/pytorch/pytorch/pull/12407
Reviewed By: hyuen
Differential Revision: D13586737
fbshipit-source-id: dc8e49e9f29505b8898bb19f84c1a983f2d811ab
Summary:
Hi guys,
I'd like to build Caffe2 with more supported options in Windows with Microsoft Visual Studios.
This is the first pull request.
Running scripts/build_windows_shared.bat is able to build Caffe2 with both CMAKE_BUILD_TYPE=Debug and CMAKE_BUILD_TYPE=Release with Visual Studio 14 2015.
CUDA is 9.0, cudnn is 7.0.5, glog, gflags and lmdb are supported on my system.
Python is 3.5, Detectron works from python interface as well.
It was even possible to debug detectron code and step into caffe2_gpu.dll with pdbs built.
What is disappointing, that c10/experimental ops don't build with this Visual Studio generator, I added special option INCLUDE_EXPERIMENTAL_C10_OPS (default ON) to deal with it in build_windows_shared.bat.
After this pull request the next step is to add Visual Studio 2017 support in the script.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13550
Reviewed By: ezyang
Differential Revision: D13042597
Pulled By: orionr
fbshipit-source-id: f313f909f599cd582a1d000eff766eef3a9fc4fc
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13002
Batch dim wasn't handled in the CPU impl (will fail for inputs with N > 1).
Fixing that here.
Differential Revision: D10515159
fbshipit-source-id: ee7e4f489d2d4de793f550b31db7c0e2ba3651e8
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12714
This is a short change to enable c10 namespace in caffe2. We did not enable
it before due to gflags global variable confusion, but it should have been
mostly cleaned now. Right now, the plan on record is that namespace caffe2 and
namespace aten will fully be supersets of namespace c10.
Most of the diff is codemod, and only two places of non-codemod is in caffe2/core/common.h, where
```
using namespace c10;
```
is added, and in Flags.h, where instead of creating aliasing variables in c10 namespace, we directly put it in the global namespace to match gflags (and same behavior if gflags is not being built with).
Reviewed By: dzhulgakov
Differential Revision: D10390486
fbshipit-source-id: 5e2df730e28e29a052f513bddc558d9f78a23b9b
Summary:
This is for Caffe2 optimization.
WIth this optimization, the following two ops can boost a lot. (Test with MaskRCNN, on SKX8180 one socket)
BatchPermutation op: reduced from 8.296387 ms to 1.4501984 ms.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12153
Differential Revision: D10362823
Pulled By: ezyang
fbshipit-source-id: 04d1486f6c7db49270992cd8cde41092154e62ee
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12180
I had to fix a lot of call sites, because a lot of places assume that
you can actually get a const vector&, and if the internal representation
of sizes in a tensor is NOT a vector, it's not possible to fulfill
this API contract.
Framework changes:
- I deleted TensorImpl::dims(); caffe2::Tensor::dims() just forwards to
sizes() now.
- De-templatized SetDims; now it is an explicit list of ArrayRef and
variadic overloads. This makes implicit conversions work again,
so I don't need to explicitly list the std::vector cases too.
- As a knock-on effect, this causes Reset() to accept at::IntList as well as
const std::vector<int64_t>&
- Edited variadic overloads of SetDims to all forward to the underlying
arbitrary-dim implementation, reducing code duplication. (It's probably
marginally less efficient in the new world.)
- Replace Tensor constructor accepting const std::vector<int64_t>& with at::IntList
- Make MKLTensor accept ArrayRef along with vector in constructor and
Reset (unfortunately, no implicit conversions here, since it's templated on
index type.)
- There are a few other places, like cudnn, where I changed functions
that previously took const std::vector<int64_t>& to take at::IntList
instead.
Classification of call site changes:
- 'const std::vector<int64_t>& x_dims = x.dims()' ==>
'at::IntList x_dims = x.dims()'
- 'std::vector<int64_t> x_dims = x.dims()' ==>
'std::vector<int64_t> x_dims = x.dims().vec()' (we need a copy!)
Usually this is because we're about to mutably modify the vector
to compute some new dimension. However, it also very commonly occurs in the
form: 'x_dims_ = x.dims()' because we frequently cache sizes in operators.
- Instead of constructing std::vector<int64_t>{blah, blah}, construct an
at::IntList directly
ArrayRef changes:
- cbegin()/cend() iterators, they operate the same aas begin()/end() because
everything on ArrayRef is const.
- Moved operator<< into ArrayRef.h, so that it's always available when
working with ArrayRef. I also templated it, so it now works on an
ArrayRef of any type.
- Add operator== overload for ArrayRef, and also add variants to permit
comparison of ArrayRef with std::vector, a very common operation.
(The non-templated version of operator== can get these automatically
via implicit conversion, but with templates C++ refuses to do
any explicit conversions.)
I'm planning to audit all dims() call sites to make sure they don't
expect 'auto x = t.dims()' to give you an x whose lifetime can validly
outlive the tensor.
I opted not to do a dims() to sizes() rename, because dims() also matches
the protobufs accessor. Bad news!
Reviewed By: jerryzh168
Differential Revision: D10111759
fbshipit-source-id: a2a81dc4b92c22ad4b3b8ef4077a7e97b6479452
Summary:
TSIA. Right now we should basically use C10_EXPORT and C10_IMPORT for explicitly marking dllexport and dllimport, as a continued effort of the C10 unification.
This is a codemod by mechanically doing the following change:
CAFFE2_{EXPORT,IMPORT} -> C10_{EXPORT,IMPORT}
AT_CORE_{EXPORT,IMPORT} -> C10_{EXPORT,IMPORT}
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12019
Reviewed By: ezyang, teng-li
Differential Revision: D10016276
Pulled By: Yangqing
fbshipit-source-id: a420d62c43d1110105fc88f9e9076e28a3203164