Commit Graph

58 Commits

Author SHA1 Message Date
Michael Acar
a4b2f3e213 Implement AdamW optimizer (#21250)
Summary:
# What is this?
This is an implementation of the AdamW optimizer as implemented in [the fastai library](803894051b/fastai/callback.py) and as initially introduced in the paper [Decoupled Weight Decay Regularization](https://arxiv.org/abs/1711.05101). It decouples the weight decay regularization step from the optimization step during training.

There have already been several abortive attempts to push this into pytorch in some form or fashion: https://github.com/pytorch/pytorch/pull/17468, https://github.com/pytorch/pytorch/pull/10866, https://github.com/pytorch/pytorch/pull/3740, https://github.com/pytorch/pytorch/pull/4429. Hopefully this one goes through.
# Why is this important?
Via a simple reparameterization, it can be shown that L2 regularization has a weight decay effect in the case of SGD optimization. Because of this, L2 regularization became synonymous with the concept of weight decay. However, it can be shown that the equivalence of L2 regularization and weight decay breaks down for more complex adaptive optimization schemes. It was shown in the paper [Decoupled Weight Decay Regularization](https://arxiv.org/abs/1711.05101) that this is the reason why models trained with SGD achieve better generalization than those trained with Adam. Weight decay is a very effective regularizer. L2 regularization, in and of itself, is much less effective. By explicitly decaying the weights, we can achieve state-of-the-art results while also taking advantage of the quick convergence properties that adaptive optimization schemes have.
# How was this tested?
There were test cases added to `test_optim.py` and I also ran a [little experiment](https://gist.github.com/mjacar/0c9809b96513daff84fe3d9938f08638) to validate that this implementation is equivalent to the fastai implementation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21250

Differential Revision: D16060339

Pulled By: vincentqb

fbshipit-source-id: ded7cc9cfd3fde81f655b9ffb3e3d6b3543a4709
2019-07-02 09:09:10 -07:00
Vincent Quenneville-Belair
f176950a67 Use lower case for strong wolfe option. (#22092)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22092
ghimport-source-id: ccc53ed2f1e16865237334a4dde4d162e21762e5

Test Plan: Imported from OSS

Differential Revision: D15955996

Pulled By: vincentqb

fbshipit-source-id: 8ffbea3b9ef8ff7021d42524fa46112da8a3438e
2019-06-26 08:20:25 -07:00
fehiepsi
ad73ea22f7 Add strong Wolfe line search for lbfgs (#8824)
Summary:
This pull request adds a line search for lbfgs. "strong Wolfe" is the default line search method in [minFunc](https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html) and it is also recommended in the [Numerical Optimization](https://www.springer.com/gp/book/9780387303031) book.

The implementation is based on four sources:
+ https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
+ https://www.springer.com/gp/book/9780387303031 Algorithms 3.5, 3.6, formula 3.59
+ https://github.com/torch/optim/blob/master/lswolfe.lua
+ https://github.com/torch/optim/blob/master/polyinterp.lua

The 'lua' version is based on an old version of `minFunc`, which has been updated in 2012. I made a couple of small changes based on the updated version. Due to that, the test of comparing with `.lua` version is not consistent (that's is the reason I changed a learning rate in the test).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/8824

Differential Revision: D15783067

Pulled By: vincentqb

fbshipit-source-id: 5316d9088233981120376d79c7869d5f97e51b69
2019-06-12 11:32:41 -07:00
Ejaaz Merali
fb9fbc009c Fix momentum bug in CyclicLR (#20401)
Summary:
Resolves issue https://github.com/pytorch/pytorch/issues/19003

The author of this issue also asked that `cycle_momentum` default to `False` if the optimizer does not have a momentum parameter, but I'm not sure what the best way to do this would be. Silently changing the value based on the optimizer may confuse the user in some cases (say the user explicitly set `cycle_momentum=True` but doesn't know that the Adam optimizer doesn't use momentum).

Maybe printing a warning when switching this argument's value would suffice?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20401

Differential Revision: D15765463

Pulled By: ezyang

fbshipit-source-id: 88ddabd9e960c46f3471f37ea46013e6b4137eaf
2019-06-11 15:10:28 -07:00
Edward Yang
3889855a5b Revert "Redefine scheduler to set learning rate using recursive formula" #14010 (#21463)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21463
ghimport-source-id: 1b0ea4a282b41388d5c6f6a5d18d37c14ae874ad

Differential Revision: D15747426

Pulled By: ezyang

fbshipit-source-id: 0708394f907b98a9f45bcfa26e5cc450fda8cf76
2019-06-10 15:26:25 -07:00
vfn
8ece538a79 Addresses bad behavior with overridden optimizer.step by #20124 (#21460)
Summary:
This PR addresses the problem described in the comment: https://github.com/pytorch/pytorch/pull/20203#issuecomment-499231276
and previously coded bad behaviour:
- a warning was raised all the times when lr schedulling is initialized

Now the code checks that:
- on the second call of `lr_scheduler.step`, ensure that `optimizer.step` has been already called, otherwise raise a warning (as it was done in #20203 )
- if optimizer's step is overridden -> raise once another warning to aware user about the new pattern:
`opt.step()` -> `lrs.step()` as we can not check this .

Now tests check that
- at initialization (`lrs = StepLR(...)`)there is no warnings
- if we replace `optimizer.step` by something else (similarly to the [code of nvidia/apex](https://github.com/NVIDIA/apex/blob/master/apex/amp/_process_optimizer.py#L287)) there is another warning raised.

cc ezyang

PS. honestly I would say that there is a lot of overhead introduced for simple warnings. I hope all these checks will be removed in future `1.2.0` or other versions...
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21460

Differential Revision: D15701776

Pulled By: ezyang

fbshipit-source-id: eac5712b9146d9d3392a30f6339cd33d90c497c7
2019-06-06 13:54:42 -07:00
vfdev
449a2c3555 Fixes #20124 (#20203)
Summary:
Fixes #20124

Description:
Code wraps `optimizer.step()` method to detect whether user is following new pattern or old pattern. In case of old pattern detected, a UserWarning is raised. Documentation is also updated to reflect the change:

![Screen Shot 2019-05-07 at 11 05 17](https://user-images.githubusercontent.com/2459423/57287527-04e63580-70b8-11e9-9ddd-5d159ef0ed2f.png)

cc SsnL, bado-lee
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20203

Differential Revision: D15543060

Pulled By: ezyang

fbshipit-source-id: 3605e1afdb6ffc2dfd5e75e92e01b967c4d065b5
2019-05-29 14:15:01 -07:00
Will Feng
8cde4c4d22 Remove Variable::Impl and DifferentiableViewImpl (#17072)
Summary:
As part of the Variable/Tensor merge work: https://github.com/pytorch/pytorch/issues/13638, we make the following changes in this PR:
1. Remove the `Variable::Impl` class and the `DifferentiableViewImpl` class
2. Change all `Variable.data()` call sites to either use `Variable` directly, or use `Variable.tensor_data()`
3. Remove `Variable.data()` API
3. Add `Variable.variable_data()` that matches `tensor.data` in Python API, which creates a new `Variable` that shares the same storage and tensor metadata with the original `Variable`, but with a completely new autograd history.

After this PR, Variable doesn't wrap a Tensor internally anymore, and both Variable and Tensor use the same TensorImpl class as its `impl_`. The only difference is that Variable always has AutogradMeta in its TensorImpl, but Tensor doesn't.

**Note that this PR is BC-breaking in the following use cases:**

**Use Case 1:**
Previously, `x.data = y` works even if `x` and `y` are of different TensorImpl type (e.g. `x` is a CPU dense tensor whose impl is of type TensorImpl, while `y` is a CPU sparse tensor whose impl is of type SparseTensorImpl). However, after this PR, `x.data = y` doesn't work anymore if `x` and `y` are of different TensorImpl type, because the underlying implementation `variable.set_data(tensor)` no longer works if `variable` and `tensor` have different TensorImpl type.

**Use Case 2:**
If a tensor `x`'s `grad` is sparse, accumulating dense gradients to `x` will change the tensor that `x.grad` is pointing to. This is better illustrated with the following example:
```python
params = torch.tensor([1.5, 1.5]).requires_grad_()
with torch.no_grad():
    # Change gradient to a sparse tensor
    params.grad = torch.sparse_coo_tensor(torch.tensor([[1, 1]]).long(), torch.tensor([1., 1.]))

grad_saved = params.grad
params.backward(torch.tensor([1.5, 1.5]))
assert id(grad_saved) == id(params.grad)  # This will fail after this PR
```
The assertion in the last line will fail after this PR, because adding dense gradients to sparse gradients will change the `params.grad` tensor reference.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17072

Differential Revision: D14075257

Pulled By: yf225

fbshipit-source-id: 0e681df641270dea586042dd26db59f2e76b5957
2019-05-23 21:09:04 -07:00
Soumith Chintala
75754beca3 Revert D14577575: [pytorch][PR] Fix lack of state init for adagrad and add share_memory flag
Differential Revision:
D14577575

Original commit changeset: 12440079ac96

fbshipit-source-id: 935106385e608471dc280fc61cfedf19d330812d
2019-04-26 15:43:04 -07:00
kirayue
af06d6342c Add SGDR(Stochastic Gradient Descent with Warm Restarts) scheduler (#17226)
Summary:
Because of merge error with master in #15042, open a new PR for ezyang.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17226

Differential Revision: D14418145

Pulled By: mrshenli

fbshipit-source-id: 099ba225b28e6aba71760b81b2153ad1c40fbaae
2019-04-25 09:26:31 -07:00
Kaiyu Shi
444f792fa6 Fix lack of state init for adagrad and add share_memory flag (#17679)
Summary:
The current code initialize the `state` in `__init__` method, but the initialization process is not invoked in `add_parameter_group`.

I followed the same approach in other Optimizers to init the `state`.

```python
import torch

emb = torch.nn.Embedding(10,10)
emb2 = torch.nn.Embedding(10,10)

optim = torch.optim.Adagrad(emb.parameters())
print(optim.state[emb.weight])  # already initialized

optim.add_param_group({'params': emb2.parameters()})
print(optim.state[emb2.weight])  # empty dict

loss = emb2.weight.sum() + emb.weight.sum()
loss.backward()
optim.step()  # raised KeyError
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17679

Differential Revision: D14577575

Pulled By: ezyang

fbshipit-source-id: 12440079ac964b9eedad48e393d47f558babe300
2019-04-23 12:22:19 -07:00
Chandler Zuo
e3f1504621 Fix the Division by Zero Bug of CosineAnnealingLR (#19180)
Summary:
Added the formula for the corner case. Updated unit tests.

Fixes #17913
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19180

Differential Revision: D14942023

Pulled By: ezyang

fbshipit-source-id: 167c109b97a7830d5b24541dc91e4788d531feec
2019-04-23 09:54:28 -07:00
Bado Lee
36084908e4 Fix lr_scheduler's last_epoch value at the time of initialization (BC BREAKING!) (#7889)
Summary:
Hello everyone :) !!

I've found that lr_scheduler was initialized with last_epoch as -1.
This causes that even after the first step (not the one in init but explicit step of scheduler),
learning rate of scheduler's optimizer remains as the previous.
```python
>>> import torch
>>> cc = torch.nn.Conv2d(10,10,3)
>>> myinitial_lr = 0.1
>>> myoptimizer = torch.optim.Adam(cc.parameters(), lr=myinitial_lr)
>>> mylrdecay = 0.5
>>> myscheduler = torch.optim.lr_scheduler.ExponentialLR(myoptimizer,mylrdecay)

>>> myscheduler.get_lr()
[0.2]    # this is because of  get_lr calculates lr by 0.1 * 0.5^-1
>>> myscheduler.optimizer.param_groups[0]["lr"]
0.1    # this is not consistent with get_lr value
>>> myscheduler.last_epoch
-1

>>> myscheduler.step()
>>> myscheduler.get_lr()
[0.1]    # this should be the value right after the init, not after first step
>>> myscheduler.optimizer.param_groups[0]["lr"]
0.1    # since this is after first step, it should have been decayed as 0.05
>>> myscheduler.last_epoch
0

>>> myscheduler.step()
>>> myscheduler.last_epoch
1
>>> myscheduler.get_lr()
[0.05]
>>> myscheduler.optimizer.param_groups[0]["lr"]
0.05
>>> myscheduler.last_epoch
1
```

First problem is, even after the init of lr_scheduler, you get the inconsistent parameter values.

The second problem is, you are stuck with same learning rate in the first 2 epochs if the step function of lr_scheduler is not called in the beginning of the epoch loop.
Of course, you can avoid this by calling lr_scheduler's step in the beginning,
but I don't think this is proper use since, incase of optimizer, step is called in the end of the iteration loop.

I've simply avoided all above issues by setting last_epoch as 0 after the initialization.

This also makes sense when you init with some value of last_epoch which is not -1.
For example, if you want to init with last epoch 10,
lr should not be set with decayed 1 step further. Which is
last_epoch gets +1 in the previous code.
base_lr * self.gamma ** self.last_epoch

Instead, it should be set with step 10 exact value.

I hope this fix find it's way with all your help :)
I'm really looking forward & excited to become a contributor for pytorch!
Pytorch Rocks!!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/7889

Differential Revision: D15012769

Pulled By: ezyang

fbshipit-source-id: 258fc3009ea7b7390a3cf2e8a3682eafb506b08b
2019-04-23 08:54:09 -07:00
barrh
557b1b362f Fix copied optimizer (#19308)
Summary:
Add the defaults field to the copied object.
Prior to this patch, optimizer.__getattr__ has excluded the defaults
attribute of optimizer source object, required by some LR schedulers. (e.g. CyclicLR with momentum)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19308

Differential Revision: D15012801

Pulled By: soumith

fbshipit-source-id: 95801b269f6f9d78d531d4fed95c973b280cc96f
2019-04-19 10:27:01 -07:00
Sam Pepose
8635078d9e Adds Cyclical Learning Rate and Momentum (#18001)
Summary:
This implements a cyclical learning rate (CLR) schedule with an optional inverse cyclical momentum. More info about CLR: https://github.com/bckenstler/CLR

This is finishing what #2016 started. Resolves #1909.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18001

Differential Revision: D14451845

Pulled By: sampepose

fbshipit-source-id: 8f682e0c3dee3a73bd2b14cc93fcf5f0e836b8c9
2019-03-27 19:56:04 -07:00
Edward Yang
2934153f35 Correctly call superclass setUp in TestCase subclasses. (#18291)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18291
ghimport-source-id: d6e95e899bd320407967df41435801e54864ba62

Stack from [ghstack](https://github.com/ezyang/ghstack):
* #18292 Add test for #17271 (torch.exp incorrect for 2**31 size tensor)
* **#18291 Correctly call superclass setUp in TestCase subclasses.**

This makes PYTORCH_TEST_SKIP_FAST work correctly for more
tests, reducing the wasted testing effort on our slow_test job.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: D14567643

fbshipit-source-id: 40cf1d6556e0dd0a0550ff3d9ffed8b6000f8191
2019-03-22 07:46:44 -07:00
Johannes M Dieterich
23e1c55cc0 enable unit tests working on ROCm 2.1 (#16871)
Summary:
This is the first round of enabling unit tests that work on ROCm 2.1 in my tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16871

Differential Revision: D13997662

Pulled By: bddppq

fbshipit-source-id: d909a3f7dd5fc8f85f126bf0613751c8e4ef949f
2019-02-09 00:30:50 -08:00
Chandler Zuo
096ee8467c Redefine scheduler to set learning rate using recursive formula (#14010)
Summary:
Modified step_lr for StepLR, MultiStepLR, ExponentialLR and CosineAnnealingLR. In this way, multiple schedulers can be used simultaneously to modify the learning rates.

Related issue: https://github.com/pytorch/pytorch/issues/13022

Added unit tests combining multiple schedulers.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14010

Reviewed By: ezyang

Differential Revision: D13494941

Pulled By: chandlerzuo

fbshipit-source-id: 7561270245639ba1f2c00748f8e4a5f7dec7160c
2018-12-18 16:44:31 -08:00
Zachary DeVito
dae7616078 Shard all of tests based on how many tests exist. (#13160)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13160

Reduces pytorch_core build from 2 hours to 30 minutes

Reviewed By: soumith, dzhulgakov

Differential Revision: D10524261

fbshipit-source-id: 97270ac73404b5ea4c264cd0e9d8d4b1be79b0e9
2018-10-26 18:20:34 -07:00
James Sun
f4944f0f8a Rename test/common.py to test/common_utils.py (#12794)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12794

common.py is used in base_module for almost all tests in test/. The
name of this file is so common that can easily conflict with other dependencies
if they happen to have another common.py in the base module. Rename the file to
avoid conflict.

Reviewed By: orionr

Differential Revision: D10438204

fbshipit-source-id: 6a996c14980722330be0a9fd3a54c20af4b3d380
2018-10-17 23:04:29 -07:00
Christian Puhrsch
d8f6be686d Remove torch/legacy (#11823)
Summary:
Largely unused and hinders current development
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11823

Differential Revision: D9925094

Pulled By: cpuhrsch

fbshipit-source-id: c797f62180e2128f9a567b0c57c8347957470ea5
2018-09-20 14:00:54 -07:00
Johannes M Dieterich
a4c59a9dab MIOpen integration, more tests enabled, bug fixes (#10612)
Summary:
* first integration of MIOpen for batch norm and conv on ROCm
* workaround a ROCm compiler bug exposed by elementwise_kernel through explicit capture of variables in the densest packing
* workaround a ROCm compiler bug exposed by having `extern "C" __host__` as a definition and just `__host__` in the implementation through the hipify script
* use fabs() in accordance with C++11 for double absolute, not ::abs() which is integer-only on ROCm
* enable test_sparse set on CI, skip tests that don't work currently on ROCm
* enable more tests in test_optim after the elementwise_bug got fixed
* enable more tests in test_dataloader
* improvements to hipification and ROCm build

With this, resnet18 on CIFAR data trains without hang or crash in our tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10612

Reviewed By: bddppq

Differential Revision: D9423872

Pulled By: ezyang

fbshipit-source-id: 22c0c985217d65c593f35762b3eb16969ad96bdd
2018-08-23 15:24:47 -07:00
iotamudelta
75651d5b58 improve use of ROCm libraries, enable more tests, small fixes (#10406)
Summary:
* some small leftovers from the last PR review
* enable more unit test sets for CI
* replace use of hcRNG w/ rocRAND (docker image was already updated w/ newer rocRAND)
* use rocBLAS instead of hipBLAS to allow convergence w/ Caffe2
* use strided_batched gemm interface also from the batched internal interface
* re-enable Dropout.cu as we now have philox w/ rocRAND
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10406

Reviewed By: Jorghi12

Differential Revision: D9277093

Pulled By: ezyang

fbshipit-source-id: 7ef2f6fe4ead77e501ed7aea5c3743afe2466ca2
2018-08-13 11:39:43 -07:00
iotamudelta
cfa05706ef ROCm contributions week 29 (#9653)
Summary:
In this changeset:
* improvements to `hipify-python.py`
* marking unit tests broken for ROCm
* reducing the number of jobs for the built to avoid out of memory issues
* switch to Thrust/cub-hip master for the CI
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9653

Differential Revision: D9117791

Pulled By: ezyang

fbshipit-source-id: a6c3c7b81f2bda9825974bf9bf89a97767244352
2018-08-02 09:09:00 -07:00
0phoff
294c065384 Changed serialization mechanism of LambdaLR scheduler (#9927)
Summary:
I opened an issue explaining some of my frustrations with the current state of schedulers.
While most points that I raised in [that issue](https://github.com/pytorch/pytorch/issues/8741#issuecomment-404449697) need to be discussed more thoroughly before being implemented, there are some that are not so difficult to fix.

This PR changes the way the LambdaLR scheduler gets serialized:
> The lr_lambda functions are only saved if the are callable objects (which can be stateful).
> There is no point in saving functions/lambdas as you need their definition before unpickling and they are stateless.

This has the big advantage that the scheduler is serializable, even if you use lambda functions or locally defined functions (aka a function in a function).

Does this functionality need any unit tests?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9927

Differential Revision: D9055505

Pulled By: soumith

fbshipit-source-id: 6c1cec588beedd098ec7d2bce6a9add27f29e48f
2018-07-31 19:39:06 -07:00
Tongzhou Wang
27455e9c78 Use _six for inf and nan (#9500)
Summary:
Things like `float('inf')` are actually quite expensive.
```py
In [1]: import math

In [2]: %timeit -n 200 math.inf
49.3 ns ± 1.42 ns per loop (mean ± std. dev. of 7 runs, 200 loops each)

In [3]: %timeit -n 200 float('inf')
194 ns ± 39.1 ns per loop (mean ± std. dev. of 7 runs, 200 loops each)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9500

Reviewed By: soumith

Differential Revision: D8876229

Pulled By: SsnL

fbshipit-source-id: 78602b76bb53d5588910b58270930c0bd413d2d7
2018-07-18 10:40:29 -07:00
Will Feng
ff501c30af Turn on UBSAN in the OSS build (#8813)
Summary:
Copy of https://github.com/pytorch/pytorch/pull/8802
Closes https://github.com/pytorch/pytorch/pull/8813

Differential Revision: D8707364

Pulled By: yf225

fbshipit-source-id: bc201980b50e9fb44c42a17f898b50d3558fc417
2018-07-05 15:55:49 -07:00
Matt Le
c5b9a36f1e Make return uniform in lbfgs step (#7586)
* Make return uniform in lbfgs step

This ensures that we are returning results of the same type
in LBFGS step.

* Adding test case to exercise different exit points

Sets the tolerance_grad to negative infinity and positive
infinity to deterministically excercise the early exit branch

* Fixing lint error
2018-05-16 11:16:46 -04:00
Changhan Wang
a257bd19a2 added state_dict/load_state_dict for ReduceLROnPlateau (#7201) 2018-05-10 12:02:28 +02:00
Armen
e44f901b55 added functionality for state_dict/load_state_dict for lr_scheduler ( Fixes: #3026 ) (#6342)
* added functionality for state_dict/load_state_dict for lr_scheduler

* fixed linting issues/removed unused import

* refactor lr_scheduler state_dicts/state_dict holds everything __dict__ but optimizer

* changed documentation in lr_scheduler

* Update lr_scheduler.py
2018-04-19 07:09:03 -04:00
Atul Kumar
3e83e3abfe Adding initial_accumulator_value parameter to Adagrad (#6616) 2018-04-16 22:12:36 +02:00
Tongzhou Wang
a2880531ea fix SGD lr check (#6244) 2018-04-03 21:29:18 -04:00
lazypanda1
3dffac91bc Fixed some tests by using the correct optimizer (#6116) 2018-03-29 23:19:00 +02:00
lazypanda1
063946d2b3 Added parameter range checks for all optimizers (#6000) 2018-03-28 11:22:23 +02:00
Sam Gross
30ec06c140
Merge Variable and Tensor classes (#5225)
This replaces the torch.Tensor constructors with factories that produce
Variables. Similarly, functions on the torch module (e.g. torch.randn)
now return Variables.

To keep the PR to a reasonable size, I've left most of the unused tensor
code. Subsequent PRs will remove the dead code, clean-up calls to
torch.autograd.Variable, and rename Variable to Tensor everywhere.

There are some breaking changes because Variable and Tensors had
slightly different semantics. There's a list of those changes here:

 https://github.com/pytorch/pytorch/wiki/Breaking-Changes-from-Variable-and-Tensor-merge
2018-02-23 18:03:31 -05:00
Marcin Elantkowski
d2ff733cb1 Make ReduceLROnPlateau serializable. (#5300)
* replace lambdas with partial

* flake8
2018-02-20 00:59:14 -05:00
lazypanda1
a061000250 Added check and test for betas parameter in Adam optimizer (#5147)
* Added check and test for betas parameter in Adam optimizer

* Simplified test
2018-02-11 20:24:43 -05:00
nguyen-binh-minh
188ee3ff0b Fix wrong learning rate evaluation in CosineAnnealingLR in Python 2 (#4656) 2018-01-14 13:10:41 +01:00
Dr. Kashif Rasul
859a173502 fix AMSGrad for SparseAdam (#4314) 2017-12-30 13:00:17 +01:00
Vishwak Srinivasan
89acc10f85 Adding description for Optimizers (#4371) 2017-12-28 16:55:52 +01:00
Dr. Kashif Rasul
68c0998cbe added AMSgrad optimizer to Adam and SparseAdam (#4034)
* initial AMSGrad

* added test for amsgrad

* added amsgrad to adam

* fixed tests

* added option to sparse adam

* flake8
2017-12-18 13:24:49 -05:00
Kai Arulkumaran
e9ef20eab5 Add Cosine Annealing LR Scheduler (#3311)
* Add Cosine Annealing LR Scheduler

* Update eta_min in tests to prevent numerical mistakes

* Use non-zero min_eta in test_cos_anneal_lr
2017-12-18 02:43:08 -05:00
Adam Paszke
af9fd35d82 Cast tensors when loading optimizer state dicts (#3658) 2017-11-28 09:56:39 -05:00
SsnL
f76d6c029c Sparse Adam optimizer for sparse gradients (#3137)
* sparse adam

* Favor dense addition over sparse_mask
2017-11-06 14:20:51 -05:00
Yan Wang
a76098ac15 fix optimizer when given single parameters (instead of an iterable)
When I use the named_parametes to modify the lr and weight decay, I will face a bug. Because the value of the named_parameters return is  torch.nn.paramter.Parameter, not a generator of the Parameter.
2017-06-05 23:47:56 -04:00
Jiaming Liu
630af4d7d8 add learning rate schedulers (#1370) 2017-05-25 16:21:43 -04:00
Edward Z. Yang
368ecb47f9 Fix flaxy test_sparse_adagrad (#1562) 2017-05-16 01:03:08 +02:00
Edward Z. Yang
80c0a8776b Fix #1447: sparse_mask doesn't make sense with uncoalesced tensors (#1458)
* Make sparseMask error if mask is uncoalesced.

Fixes #1447.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Add test for sparse adagrad.

Previously, the sparse codepath was not exercised at all; this commit
adds a very simple test case "sparse Rosenbrock"; the idea is to do
Rosenbrock but then knock out one of the dimensions so that the
tensor is sparse.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
2017-05-03 17:53:45 -04:00
Soumith Chintala
d4c9a3782b billinear -> bilinear, docs for upsampling, improved docs for Unpooling, pep8 tests fix (#617)
* billinear -> bilinear, docs for upsampling, improved docs for Unpooling, pep8 tests fix
2017-01-30 05:08:48 +05:30
Luke Yeager
e7c1e6a8e3 [pep8] Fix most lint automatically with autopep8
Here's the command I used to invoke autopep8 (in parallel!):

    git ls-files | grep '\.py$' | xargs -n1 -P`nproc` autopep8 -i

Several rules are ignored in setup.cfg. The goal is to let autopep8
handle everything which it can handle safely, and to disable any rules
which are tricky or controversial to address. We may want to come back
and re-enable some of these rules later, but I'm trying to make this
patch as safe as possible.

Also configures flake8 to match pep8's behavior.

Also configures TravisCI to check the whole project for lint.
2017-01-28 01:15:51 +01:00