Commit Graph

295 Commits

Author SHA1 Message Date
vishwakftw
291746f110 Rename trtrs to triangular_solve (#18213)
Summary:
Changelog:
- Renames `trtrs` to `triangular_solve` to remain consistent with `cholesky_solve` and `solve`.
- Rename all tests, fix callsites
- Create a tentative alias for `triangular_solve` under the name `trtrs`, and add a deprecation warning to not promote usage.
- Move `isnan` to _torch_docs.py
- Remove unnecessary imports
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18213

Differential Revision: D14566902

Pulled By: ezyang

fbshipit-source-id: 544f57c29477df391bacd5de700bed1add456d3f
2019-03-21 14:27:21 -07:00
Vishwak Srinivasan
a519217ee7 Add batched version of trtrs (#18025)
Summary:
- Remove single batch TH/THC implementations
- Remove `_batch_trtrs_lower` from `multivariate_normal`
- Add tests for batched behavior
- Modify trtrs_backward to accommodate for batched case
- Modify docs

In a future PR, this will be renamed to `triangular_solve`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18025

Differential Revision: D14523004

Pulled By: ifedan

fbshipit-source-id: 11c6a967d107f969b60e5a5c73ce6bb8099ebbe1
2019-03-20 11:11:32 -07:00
Vishwak Srinivasan
421b508d55 Rename gesv to solve (#18060)
Summary:
Changelog:

- Renames `gesv` to `solve` to remain consistent with `cholesky_solve`.
- Rename all tests, fix callsites
- Create a tentative alias for `solve` under the name `gesv`, and add a deprecated warning to not promote usage.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18060

Differential Revision: D14503117

Pulled By: zou3519

fbshipit-source-id: 99c16d94e5970a19d7584b5915f051c030d49ff5
2019-03-18 16:04:24 -07:00
Richard Zou
3c977fb7ce Error out on in-place (unary) ops on tensors that have internal overlap (#17927)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17927
ghimport-source-id: 626d321e430b6b5c0ea3aa1eb9df8c1e2d058bf8

Stack:
* #17926 Implement at::has_internal_overlap helper function
* **#17927 Error out on in-place (unary) ops on tensors that have internal overlap**

On the way to #17935.

Works for CPU and CUDA on the following ops:
- abs_, acos_, asin_, atan_, ceil_, cos_, erf_, erfc_, exp_, expm1_
- floor_, log_, log10_, log1p_, log2_, round_, rsqrt_,
- sin_, sqrt_, tan_, tanh_, trunc_

This PR adds a check to see if the out/result tensor has internal
overlap. If it does, then we error out because the result **may** be
incorrect.

This is overly conservative; there are some cases where if the result is
the same as the input, the inplace operation is OK (such as floor_,
round_, and trunc_). However, the current code isn't organized in such a
way that this is easy to check, so enabling those will come in the future.

Reviewed By: ezyang

Differential Revision: D14438871

fbshipit-source-id: 15e12bf1fdb2ab7f74bb806e22bc74840bd6abd1
2019-03-15 07:50:19 -07:00
J M Dieterich
1ba1ca0acb Update to ROCm2.2 (#18007)
Summary:
ROCm 2.2 was released today, if we respin the CI docker images with the attached, PyTorch/Caffe2 will support ROCm 2.2

Changes necessary:
* for the Ubuntu target, HIP PR 934 needs to be applied to fix the forceinline definition. ROCm 2.3 will contain this.
* two unit tests proof flaky on different platforms, disable them defensively.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18007

Differential Revision: D14473903

Pulled By: bddppq

fbshipit-source-id: b1939f11d1c765a3bf71bb244b15f6ceb0e816d3
2019-03-14 18:47:22 -07:00
vaeksare
40a3e14ade Disable btri tests on Windows if MAGMA is not found (#17989)
Summary:
Fixes #17988
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17989

Reviewed By: ezyang

Differential Revision: D14454571

Pulled By: soumith

fbshipit-source-id: fc39a807a597d3574f4ca4e22cea12194e4693c0
2019-03-14 07:22:55 -07:00
Thomas Viehmann
aba9051a65 kthvalue consistency with sort in the presence of NaN (#17824)
Summary:
This PR causes kthvalue to be consistent with sort
(i.e. treat NaN as larger than any number), so that
`a.kthvalue(n) == a.sort()[n - 1]`.

One drawback is that median with a NaN argument does not return NaN,
which is a deviation from NumPy.

Thank you, ngimel, for raising this.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17824

Differential Revision: D14410092

Pulled By: ezyang

fbshipit-source-id: bdec2d8272dc4c65bcf2f9b8995e237774c44c02
2019-03-12 08:49:19 -07:00
vishwakftw
9d70e199f4 Move lerp to ATen, add functionality for tensor weights (#17348)
Summary:
Changelog:
- Remove TH/THC bindings
- Add tensor weights for `lerp`
- Modify derivatives appropriately
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17348

Differential Revision: D14355845

Pulled By: soumith

fbshipit-source-id: eaede4c09ee589d77ba6cf52583510ea8e3a2fcf
2019-03-07 14:04:58 -08:00
jwu
8ec7357312 fix different round behavior on CPU and GPU #16498 (#17443)
Summary:
xxtemp, colesbury, bhushan23, zou3519,  convert gpu round behavior to half-to-even, consistent with torch cpu version and numpy. You feedback are welcomed.
See #16498
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17443

Differential Revision: D14261786

Pulled By: VitalyFedyunin

fbshipit-source-id: 98156436b545d72769831a89e2775d43ad913ebc
2019-03-06 19:40:10 -08:00
Shen Li
1154506533 Always synchronize src and dst streams when copying tensors (#16966)
Summary:
fixes #15568
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16966

Differential Revision: D14213144

Pulled By: mrshenli

fbshipit-source-id: 2fcf5e07895fde80b4aee72e2736b0def876d21f
2019-02-27 14:57:56 -08:00
Johannes M Dieterich
76828647c1 Enable tests working on ROCm 2.1 dual gfx906
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17473

Reviewed By: bddppq

Differential Revision: D14210243

Pulled By: ezyang

fbshipit-source-id: 519032a1e73c13ecb260ea93102dc8efb645e070
2019-02-26 20:41:16 -08:00
Shen Li
b527055fcf Restore current streams on dst device after switching streams (#17439)
Summary:
When switching back to `d0` from a stream on a different device `d1`, we need to restore the current streams on both `d0` and `d1`. The current implementation only does that for `d0`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17439

Differential Revision: D14208919

Pulled By: mrshenli

fbshipit-source-id: 89f2565b9977206256efbec42adbd789329ccad8
2019-02-25 12:06:41 -08:00
surgan12
fad9eda7fb Optional arg fixes (#17222)
Summary:
fixes #17210.
cc : ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17222

Differential Revision: D14130833

Pulled By: soumith

fbshipit-source-id: 19ff6020c47208e3436ae28cd16110a0f435b25e
2019-02-19 04:39:18 -08:00
jiej
b5193b6a81 Second PR to restore reverted commit (#16224) (#17040)
Summary:
update:
  1. global_reduce check for should_block_y_reduce first.
     This avoids the enabling global_reduce without block_y_reduce. Leading to
     accessing shared memory during global reduce without allocation.
  2. updating block_y_reduce heuristics. Improves perf on tiny tensors
  3. adding test case covering old cases where illegal memory access might occur

  TensorIterator cuda launch configs update (#16224)
    Update launch configs for TensorIterator gpu_reduce_kernel. Enable flexible
    block dimension to improve efficiency for reduction cases with small fast
    dimension.

    Previously TensorIterator launches blocks with fixed 32x16 threads.
    For cases like:

      import torch
      torch.randn(2**20, 4, device='cuda').sum(0)

    The fixed launch config does handle coalesced memory access efficiently.

    Updated launch configure enables flexible block dimension. Combining with
    improved reduction scheme (using flexible vertical / horizontal reduction
    instead of limited warp / block reduction in the old code), it ensures optimal
    memory access pattern even with reduction on dimension with small stride.

    Possible future improvements:
    1. Precise dynamic shared memory allocation.
    2. Using warp shuffle for vertical (block_y) reduction.
    Pull Request resolved: https://github.com/pytorch/pytorch/pull/16224
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17040

Differential Revision: D14078295

Pulled By: umanwizard

fbshipit-source-id: ecc55054a5a4035e731f0196d633412225c3b06c
2019-02-14 15:23:01 -08:00
Johannes M Dieterich
3e1e5d5a8b enable unit tests in test_cuda that now pass with ROCm 2.1
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17012

Differential Revision: D14059761

Pulled By: bddppq

fbshipit-source-id: 8309c3ffe1efed42b5db69fdec26427413c3f224
2019-02-12 17:28:46 -08:00
vishwakftw
0d95028bee Dispatch the correct legacy function for geqrf_out and ormqr_out (#16964)
Summary:
This fixes the segfault.

Changelog:
- Modify the function calls in LegacyDefinitions for `geqrf_out` and `ormqr_out`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16964

Differential Revision: D14025985

Pulled By: gchanan

fbshipit-source-id: aa50e2c1694cbf3642273ee14b09ba12625c7d33
2019-02-12 13:48:51 -08:00
Johannes M Dieterich
23e1c55cc0 enable unit tests working on ROCm 2.1 (#16871)
Summary:
This is the first round of enabling unit tests that work on ROCm 2.1 in my tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16871

Differential Revision: D13997662

Pulled By: bddppq

fbshipit-source-id: d909a3f7dd5fc8f85f126bf0613751c8e4ef949f
2019-02-09 00:30:50 -08:00
vishwakftw
6d86bc7c3f Fix issue with scalars and __rpow__ (#16687)
Summary:
Changelog:

- Modify __rpow__ function in tensor.py to adapt to scalars
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16687

Differential Revision: D13936720

Pulled By: soumith

fbshipit-source-id: b0c8727968b04efbc6e7461807c812d962f03370
2019-02-02 18:55:51 -08:00
Jacie Fan
a7796bc24d CUDA histogram implementation
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/15842

Reviewed By: zou3519

Differential Revision: D13868982

Pulled By: jaciefan

fbshipit-source-id: bce81dc121c4538d204047506f8f14d0b4d8f905
2019-01-30 11:36:20 -08:00
Shen Li
7ce634ebc2 Relax lower bound for nogil timing test to avoid false alarm (#16259)
Summary:
fixes #16250, #16271
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16259

Differential Revision: D13784505

Pulled By: mrshenli

fbshipit-source-id: 0b7ad98cd3c018b9907d70158de3abc3c4cb57ef
2019-01-24 17:16:02 -08:00
Shen Li
2235fb256e Add default_stream() and enhance current_stream() (#16200)
Summary:
Closes #16156
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16200

Differential Revision: D13747455

Pulled By: mrshenli

fbshipit-source-id: 00c0d5f341c3ac7a757bdb4631a17e11fbc6d3ec
2019-01-22 14:35:19 -08:00
Shen Li
1c058de9ac Release GIL when synchronize or wait (#16182)
Summary:
address the second future work item in #15937
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16182

Differential Revision: D13744972

Pulled By: mrshenli

fbshipit-source-id: e9812e3fd4a5623e99b639d9f334bfc2d1827d92
2019-01-22 13:29:07 -08:00
Shen Li
898329c3f9 Unify device() return type in Stream, Event, and Tensor (#16150)
Summary:
Addresses one future work item in #15937
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16150

Differential Revision: D13732299

Pulled By: mrshenli

fbshipit-source-id: 4d0b35df573a3bf92dea6e2e7eb42fe8bac77b18
2019-01-19 23:01:31 -08:00
Shen Li
292edfb087 Change current device in stream context manager if necessary (#16128)
Summary:
Fixes #16019
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16128

Differential Revision: D13721850

Pulled By: mrshenli

fbshipit-source-id: 422c6c0b97c1cd46e127e265b532cb8c74a3aac5
2019-01-18 12:39:51 -08:00
Shen Li
24f4d3987e Move all Stream and Event Python implementation to C++ (#15937)
Summary:
1. Added `torch/csrc/cuda/Event.h` and `torch/csrc/cuda/Event.cpp` to bind Python Event class to C++ implementation.
2. Move all CUDA runtime invocations from `torch/cuda/streams.py` to C++
3. Added tests to cover Stream and Event APIs. ~(event IPC handle tests is introduced in #15974)~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15937

Differential Revision: D13649001

Pulled By: mrshenli

fbshipit-source-id: 84ca58f35f6ba679a4ba33150ceba678d760d240
2019-01-17 07:29:22 -08:00
jiej
7c56db73d5 Moving torch.norm to ATen using TensorIterator (#15414)
Summary:
Adding supports for torch.nomr:
i. multi dimensions for dim
ii. dtype that specifies math/output tensor type
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15414

Differential Revision: D13702022

Pulled By: ezyang

fbshipit-source-id: da2676f2b6aff988889b1539d0de8ecd4946823a
2019-01-16 22:15:25 -08:00
Thomas Viehmann
d33e7d1236 multinomial: fix detection of zero probability (#16075)
Summary:
The cumsum over the probabilities can be not monotonically
non-decreasing. Thus it is hard to detect zero probability
classes using just the cumsum.
This changes the binary search postprocessing to use the
(non-cumulated) distribution instead.

Thank you, jcjohnson, for the bug report with
reproducing case.

Fixes: #13867
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16075

Differential Revision: D13695565

Pulled By: soumith

fbshipit-source-id: 02c4d6f868f0050c1ae7d333f4317c5610e49cd9
2019-01-16 12:50:49 -08:00
Brennan Vincent
fb68d813be Fix logic errors when accumulating reductions in output (CUDA) (#16023)
Summary:
The correct logic is as follows:

* If there is an earlier split, we need to combine with its result
* If there is *not* a later split, we need to project before saving into the output.

This should partially f i x #15837  . For example:
```
In [7]: a=torch.ones([1838860800], dtype=torch.float, device="cuda:1")

In [8]: a.mean()
Out[8]: tensor(1., device='cuda:1')
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16023

Differential Revision: D13678449

Pulled By: umanwizard

fbshipit-source-id: ab5078484c88e96bb30121b5cf24a0e8b0a8c2f8
2019-01-15 19:57:57 -08:00
SsnL
300dcc3b96 Add cuda.reset_max_memory_* (#15985)
Summary:
Addresses #15968
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15985

Differential Revision: D13649916

Pulled By: soumith

fbshipit-source-id: a207aea5709a79dba7a6fc541d0a70103f49efff
2019-01-14 07:31:51 -08:00
vishwakftw
b4c3268b23 Batched upper triangular, lower triangular (#15257)
Summary:
Changelog:

- Implements `triu` and `tril` for batches of 2D tensors.
- Remove TH/THC binding for `tril`
- Fix CUDA implementation
- Update docstrings for tril and triu.
- Remove mask-based `triu` and `tril` in cholesky forward and backward.
- Remove batched tril in torch.distributions.utils
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15257

Differential Revision: D13613888

Pulled By: mrshenli

fbshipit-source-id: 0949a05b9b8e974c1acfaf02a6284848ec5cc1c4
2019-01-09 19:46:39 -08:00
Shen Li
7b9f794580 Wrap C10 CUDAStream instead of cudaStream_t in THCPStream
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/15833

Differential Revision: D13608337

Pulled By: mrshenli

fbshipit-source-id: 4c66ef89fad0dc14a11ddb69da92907797cd2828
2019-01-09 15:12:48 -08:00
Shen Li
1e9a6d7192 A quick fix for Stream operation errors on non-current device (#15689)
Summary:
see #15682

This is a quick fix by implementing the simpler solution as suggested by colesbury. As benchmark result shows, it slows down `Stream.query()` by ~20%, I would be happy to further pursue a more complex solution by implementing this in C++/ATen. But I would still vote for merge this quick fix first just to get rid of the bug sooner.

~Test TBA~ Added

FYI jeffreyksmithjr

now

```python
In [1]: def f():
   ...:     d0 = torch.device('cuda:0')
   ...:     d1 = torch.device('cuda:1')
   ...:     with torch.cuda.device(d0):
   ...:         s0 = torch.cuda.current_stream()
   ...:     with torch.cuda.device(d1):
   ...:         s1 = torch.cuda.current_stream()
   ...:     s0.query()
   ...:     s1.query()

In [4]: %timeit f()
38.1 µs ± 4.2 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

In [5]: %timeit f()
37.6 µs ± 2.7 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
```

before

```python
In [4]: %timeit f()
28.5 µs ± 1.74 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

In [5]: %timeit f()
35.3 µs ± 2.91 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15689

Differential Revision: D13571697

Pulled By: mrshenli

fbshipit-source-id: 4fe697f91248c6419136d37bb5b7147e612e2f4c
2019-01-03 15:14:58 -08:00
Natalia Gimelshein
e2549cbc01 initialize with ident value in global reduction (#15653)
Summary:
Fixes #15647. cc colesbury.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15653

Differential Revision: D13571132

Pulled By: soumith

fbshipit-source-id: 8f25943c974b3b931f4528e0e0a370bc095dab51
2019-01-02 19:52:57 -08:00
surgan12
b52420742d clamp fixes (#15479)
Summary: fix to #15338 .

Differential Revision: D13564343

Pulled By: soumith

fbshipit-source-id: be64b572945533e10ae6f627d335b47f093720a3
2019-01-01 23:12:17 -08:00
vishwakftw
7bb41e3953 Make btriunpack work for high dimensional batches and faster than before (#15286)
Summary:
Changelog:
- Optimize btriunpack by using `torch.where` instead of indexing, inplace operations instead of out place operations and avoiding costly permutations by computing the final permutation over a list.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15286

Differential Revision: D13562038

Pulled By: soumith

fbshipit-source-id: e2c94cfab5322bf1d24bf56d7b056619f553acc6
2018-12-30 12:42:07 -08:00
Vishwak Srinivasan
9c8d8eab9d Remove TH/THC link for gesv (#15510)
Summary:
This PR removes the TH/THC binding for gesv.

Changelog:
- Remove TH/THC binding
- Port single matrix case to ATen
- Enable test_gesv for CUDA as well
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15510

Differential Revision: D13559990

Pulled By: soumith

fbshipit-source-id: 9da2825e94d3103627e719709e6b1f8b521a07fb
2018-12-28 16:54:27 -08:00
Frank Zhang
d4712ee218 Added correct isinf handling for Integral tensors (#15489)
Summary:
Currently torch.isinf on integral tensor will raise RuntimeError: value cannot be converted to type int16_t without overflow: inf.
This pr will suppress the error and return false(0) for all integral tensors. The behavior will also be consistent with np.isinf
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15489

Reviewed By: zou3519

Differential Revision: D13540786

Pulled By: flashhack

fbshipit-source-id: e730dea849da6a59f3752d347bcfbadfd12c6483
2018-12-26 06:36:09 -08:00
Shen Li
06a7cb5901 Implementing cuda kernel for tril_indices and triu_indices (#15203)
Summary:
Followup PR of #14904, and the stretch goal of #12653.

Directly calculate coordinates in the original tensor using column index in the result tensor. Every GPU thread takes care of a column (two numbers) in the output tensor.

The implementation detects and handles precision loss during calculating the square root of a `int64_t` variable, and supports tensors with up to `row * column = 2 ^ 59` numbers.

Algorithm details are describe in [comments of TensorFactories.cu](23ddb6f58a/aten/src/ATen/native/cuda/TensorFactories.cu (L109-L255)).

zou3519
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15203

Reviewed By: zou3519

Differential Revision: D13517695

Pulled By: mrshenli

fbshipit-source-id: 86b305d22cac08c8962a3b0cf8e9e620b7ec33ea
2018-12-20 10:23:38 -08:00
vishwakftw
41e7e1bc40 Rename potrs to cholesky_solve (#15334)
Summary:
Changelog:
- Renames `potrs` to `cholesky_solve` to remain consistent with Tensorflow and Scipy (not really, they call their function chol_solve)
- Default argument for upper in cholesky_solve is False. This will allow a seamless interface between `cholesky` and `cholesky_solve`, since the `upper` argument in both function are the same.
- Rename all tests
- Create a tentative alias for `cholesky_solve` under the name `potrs`, and add deprecated warning to not promote usage.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15334

Differential Revision: D13507724

Pulled By: soumith

fbshipit-source-id: b826996541e49d2e2bcd061b72a38c39450c76d0
2018-12-19 12:31:24 -08:00
Jie
bd958cde68 [TensorIterator fixing mean to output correct result for half precisi… (#14878)
Summary:
…on](#12115)

mean is calculated in two step sum()/numel(). For half precision, data gets
casted back to half after sum().
We fused the division into the reduction kernel by adding pre_op/post_op.

This allows us to do torch.ones(65536).cuda().half().mean() to return correct
result.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14878

Differential Revision: D13491159

Pulled By: soumith

fbshipit-source-id: e83802e1628b6d2615c45e18d7acf991d143a09e
2018-12-17 20:13:30 -08:00
Chaitanya Sri Krishna Lolla
9f1d8f2eeb enabled tests in test_nn, test_cuda and test_sparse (#15232)
Summary:
tests work on ROCm 1.9.2 as present on CI (fp16 bringup, hipMemset and sparse improvements)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15232

Differential Revision: D13470991

Pulled By: bddppq

fbshipit-source-id: 45acc4f9ea5baaaf7672b86eb022948055779925
2018-12-14 14:27:57 -08:00
Shen Li
90f9e8103c Implement torch.tril_indices and torch.triu_indices (#12653) (#14904)
Summary:
This is an optimized implementation that does the following:

1. created an empty Tensor of correct size.
2. fill the Tensor with correct values.

The following three designs to fill in the Tensor result in roughly the same performance. Hence, the 2nd option is taken for simpler code, and to return contiguous tensors.

1. Sequential: fill row coordinates first, then columns. This results in two for-loop and more arithmetic operations.
2. Interleaved: fill in index coordinates one by one, which jumps between the two output Tensor rows in every iteration.
3. Transpose: create a n X 2 Tensor, fill the Tensor sequentially, and then transpose it.

<img width="352" alt="screen shot 2018-12-10 at 3 54 39 pm" src="https://user-images.githubusercontent.com/16999635/49769172-07bd3580-fc94-11e8-8164-41839185e9f9.png">

NOTE:

This implementation returns a 2D tensor, instead of a tuple of two tensors. It means that users will not be able to do the following:

```python
x = torch.ones(3, 3)
i = torch.tril_indices(3, 3)
x[i]  # need to first convert the 2D tensor into a tuple of two 1D tensors.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14904

Reviewed By: zou3519

Differential Revision: D13433027

Pulled By: mrshenli

fbshipit-source-id: 41c876aafcf584832d7069f7c5929ffb59e0ae6a
2018-12-12 15:40:14 -08:00
SsnL
fab8085111 _get_device_index supports parsing device strings
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14929

Reviewed By: weiyangfb

Differential Revision: D13394498

Pulled By: soumith

fbshipit-source-id: 948c6118abdf6c1e1a8a17709333954cafb2345e
2018-12-09 21:12:46 -08:00
Johannes M Dieterich
52942e1f09 Enable unit tests known to work on ROCm (#14011)
Summary:
* Enable unit tests known to work on ROCm.
* Disable a few that are known to be flaky for the time being.
* Use std::abs for Half
* No more special casing for ROCm in TensorMathReduce
* Document an important detail for a hardcoded block size w.r.t. ROCm in TensorMathReduce

ezyang bddppq for awareness
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14011

Differential Revision: D13387679

Pulled By: bddppq

fbshipit-source-id: 4177f2a57b09d866ccbb82a24318f273e3292f71
2018-12-07 18:57:32 -08:00
Jie
d2fdc33411 (#14580)
Summary:
Removes cast of half to float in torch.sum, with float16 input tensor and
float32 output tensor, instead we cast data when loading input in kernel.

This supposingly would save a kernel launch as well as a full global memory load
on promoted data type (float).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14580

Differential Revision: D13356203

Pulled By: ezyang

fbshipit-source-id: 85e91225b880a65fe3ceb493371b9b36407fdf48
2018-12-06 09:03:46 -08:00
Francisco Massa
2d958b7f77 Storage.clone maintains original device (#14751)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/14673

As pointed out by vishwakftw , the root case of the `deepcopy` issue was that `storage.clone()` would create a new storage in the default device.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14751

Reviewed By: soumith

Differential Revision: D13323061

Pulled By: fmassa

fbshipit-source-id: bfe46ebd78f0b6cd9518c11d09de7849282ed2a2
2018-12-05 08:33:56 -08:00
Roy Li
c03851e93a remove copy_wrapper (#13937)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13937

We can now replace s_copy_ with our new _copy_ function. Experimented with moving s_copy_ out of VariableManualType.cpp, but seemed like there was enough special casing to warrant it staying.

Reviewed By: ezyang

Differential Revision: D13053648

fbshipit-source-id: e9e04d460baf4ee49b500212cf91b95221acd769
2018-11-30 11:12:59 -08:00
Sam Gross
006505bb8f Speed-up "advanced" indexing operations (#13420)
Summary:
This speeds-up "advanced" indexing (indexing a tensor by a tensor)
on CPU and GPU. There's still a bunch of work to do, including
speeding up indexing by a byte (boolean) mask and speeding up the derivative
calculation for advanced indexing.

Here's some speed comparisons to indexing on master using a little [benchmark script](https://gist.github.com/colesbury/c369db72aad594e5e032c8fda557d909) with 16 OpenMP threads and on a P100. The test cases are listed as (input shape -> output shape).

| Test case             | CPU (old vs. new)   | CUDA (old vs. new)     |
|-----------------------|---------------------|------------------------|
| 1024x1024 -> 512x1024 | 225 us vs. **57 us**  | 297 us vs. **47 us** |
| 1024x1024 -> 1024x512 | 208 us vs. **153 us** | 335 us vs. **54 us** |
| 50x50 -> 20000x50     | 617 us vs. **77 us**  | 239 us vs. **54 us** |
| 50x50 -> 50x20000     | 575 us vs. **236 us** | 262 us vs. **58 us** |
| 2x5x10 -> 10          | 65 us  vs. **18 us**  | 612 us vs. **93 us** |

See #11647
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13420

Reviewed By: soumith

Differential Revision: D13088936

Pulled By: colesbury

fbshipit-source-id: 0a5c2ee9aa54e15f96d06692d1694c3b24b924e2
2018-11-27 15:23:59 -08:00
Your Name
07a8a730af Print warning when ROCm memory leaking is detected in pytorch tests (#14151)
Summary:
We keep seeing random failures in CI because of ROCm memory leaking, e.g:

https://ci.pytorch.org/jenkins/job/pytorch-builds/job/py2-clang7-rocmdeb-ubuntu16.04-test/3102//console
https://ci.pytorch.org/jenkins/job/pytorch-builds/job/py2-clang7-rocmdeb-ubuntu16.04-test/3080//console

To make the CI more stable, turn it to warning instead of failure.

iotamudelta please help investigating the memory leaking
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14151

Differential Revision: D13115096

Pulled By: bddppq

fbshipit-source-id: a13b68274ecba363d9d8436aa6a62ac40a77d78c
2018-11-18 00:11:44 -08:00
vishwakftw
a30ade1139 Batched cholesky decomposition (#14017)
Summary:
Implements batching for the Cholesky decomposition.

Performance could be improved with a dedicated batched `tril` and `triu` op, which is also impeding autograd operations.

Changes made:
- batching code
- tests in `test_torch.py`, `test_cuda.py` and `test_autograd.py`.
- doc string modification
- autograd modification
- removal of `_batch_potrf` in `MultivariateNormal`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14017

Differential Revision: D13087945

Pulled By: ezyang

fbshipit-source-id: 2386db887140295475ffc247742d5e9562a42f6e
2018-11-17 10:49:15 -08:00
Sam Gross
c3680e2b19 Fix sum() on fp16 (#13926)
Summary:
The size of the shared and global memory buffers were incorrect for float16.
They were sized based on float16 elements, but the buffers store intermediate
float32 values.

Fixes #13909
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13926

Differential Revision: D13048334

Pulled By: colesbury

fbshipit-source-id: 5a07df53f1152d5920258e91ed3f1e1de89b29e1
2018-11-13 16:50:36 -08:00
Richard Zou
e43fb1d26d Fix cuda out of memory test (#13864)
Summary:
torch.randn(big_number_here, dtype=torch.int8) is wrong because randn
isn't implemented for torch.int8. I've changed it to use torch.empty
instead.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13864

Differential Revision: D13032130

Pulled By: zou3519

fbshipit-source-id: d157b651b47b8bd736f3895cc242f07de4c1ea12
2018-11-13 07:30:30 -08:00
Johannes M Dieterich
ce48958606 enable more unit tests (#13166)
Summary:
This enables the distributions and utils test sets for ROCm.
Individual tests are enabled that now pass due to fixes in HIP/HCC/libraries versions in white rabbit.

For attention: bddppq ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13166

Differential Revision: D12814759

Pulled By: bddppq

fbshipit-source-id: ea70e775c707d7a8d2776fede6154a755adef43e
2018-11-12 18:49:52 -08:00
Vishwak Srinivasan
7b2fb012a8 Make potrs batched (#13453)
Summary:
- This is a straightforward PR, building up on the batch inverse PR, except for one change:
  - The GENERATE_LINALG_HELPER_n_ARGS macro has been removed, since it is not very general and the resulting code is actually not very copy-pasty.

Billing of changes:
- Add batching for `potrs`
- Add relevant tests
- Modify doc string

Minor changes:
- Remove `_gesv_single`, `_getri_single` from `aten_interned_strings.h`.
- Add test for CUDA `potrs` (2D Tensor op)
- Move the batched shape checking to `LinearAlgebraUtils.h`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13453

Reviewed By: soumith

Differential Revision: D12942039

Pulled By: zou3519

fbshipit-source-id: 1b8007f00218e61593fc415865b51c1dac0b6a35
2018-11-09 15:16:26 -08:00
Sam Gross
014ea1e1f8 Improve CUDA out-of-memory error message (#13751)
Summary:
```
The new error message now looks like (from Python):

  RuntimeError: CUDA out of memory. Tried to allocate 16.00 GiB (GPU 0; 11.93 GiB total capacity; 4.00 GiB already allocated; 7.33 GiB free; 179.00 KiB cached)

Summary of terms:

  "total capacity": total global memory on GPU
  "already allocated": memory allocated by the program using the
                       caching allocator
  "free": free memory as reported by the CUDA API
  "cached": memory held by the allocator but not used by the program

  The "allocated" amount  does not include memory allocated outside
  of the caching allocator, such as memory allocated by other programs
  or memory held by the driver.

  The sum of "allocated" + "free" + "cached" may be less than the
  total capacity due to memory held by the driver and usage by other
  programs.

  Note that at this point cuda_malloc_retry has already returned all
  possible "cached" memory to the driver. The only remaining "cached"
  memory is split from a larger block that is partially in-use.
```

This also fixes an issue where on out-of-memory could cause an unrelated subsequent CUDA kernel launch to fail because `cudaGetLastError()` was not cleared.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13751

Differential Revision: D13007177

Pulled By: colesbury

fbshipit-source-id: ea7121461b3f2a34646102959b45bde19f2fabab
2018-11-09 14:33:28 -08:00
vishwakftw
0a090fe60a Fix torch.dist for infinity, zero and minus infinity norms (#13713)
Summary: Fixes #13559

Differential Revision: D12981556

Pulled By: zou3519

fbshipit-source-id: 99e86abab3ca045257374a9212ca24e7ca59fe9d
2018-11-08 12:03:07 -08:00
Tongzhou Wang
2448a83d30 Give broadcast_coalesced tensors different version counters (#13594)
Summary:
In `broadcast_coalesced`, since multiple variables can be "views" of a big flattened tensor, they can share the same version counter. However, this base flat tensor is not exposed and they don't share any memory locations, so this is not necessary. Furthermore, it can cause problems, e.g., when two buffers are broadcast together in `DataParallel` and one of them is modified in-place during `forward` but the other is needed in backward, autograd engine will complain.

Fixing the bug discovered at https://github.com/pytorch/pytorch/pull/13350#issuecomment-436011370

edit: This is a very real problem. E.g., consider using Spectral Norm + Batch Norm together.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13594

Differential Revision: D12967311

Pulled By: SsnL

fbshipit-source-id: 52998dbabe149f575cf0fb79e7016f0b95e4b9e5
2018-11-07 21:49:35 -08:00
bddppq
4326873330 Skip std and var tests in pytorch rocm CI (#13662)
Summary:
https://github.com/pytorch/pytorch/pull/13435
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13662

Reviewed By: soumith

Differential Revision: D12958408

Pulled By: bddppq

fbshipit-source-id: 170b59769fbed149c9246b6549c62160e27d2404
2018-11-07 10:10:25 -08:00
Tongzhou Wang
2f82a06826 Fix half_tensor.bernoulli_(double) (#13474)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/12431
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13474

Differential Revision: D12897834

Pulled By: SsnL

fbshipit-source-id: 598250fd7b9f1d2509ec0e5012724d7895a62daf
2018-11-02 07:46:46 -07:00
Tongzhou Wang
6d2b3cc869 Fix pytest, make it work with run_test.py (#13416)
Summary:
Fixes #13326

Also now you can use `run_test.py` with `pytest`. E.g.,
```
python run_test.py -vci distributed -pt
```

Yes it works with `distributed` and `cpp_extension`.

cc zou3519 vishwakftw
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13416

Differential Revision: D12895622

Pulled By: SsnL

fbshipit-source-id: 2d18106f3a118d642a666bfb1318f41c859c3df7
2018-11-01 19:08:06 -07:00
jithunnair-amd
4d141bee98 Skip test_sum_noncontig in ROCm (#13341)
Summary:
Since it fails due to insufficient precision for DoubleTensor .sum() on ROCm
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13341

Differential Revision: D12851335

Pulled By: bddppq

fbshipit-source-id: e211c3868b685aa705160ce98a2a18a915ad493f
2018-10-30 16:54:44 -07:00
Tongzhou Wang
8ad69a80e3 Test scripts only run cases defined in the running script (#13250)
Summary:
1. Refactors `TestTorch` into `TestTorchMixin` (subclass of `object`) and `TestTorch` (subclass of `TestCase`, MRO `(TestCase, TestTorchMixin)`, only defined if `__name__ == '__main__'`). So other scripts won't accidentally run it.
2. Adds an assertion in `load_tests` that each script only runs cases defined in itself.

cc yf225 ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13250

Differential Revision: D12823734

Pulled By: SsnL

fbshipit-source-id: 7a169f35fe0794ce76e310d8a137d9a3265c012b
2018-10-29 13:57:40 -07:00
Sam Gross
52b6460d3a Fix bug in some reductions that use global memory (#13211)
Summary:
Reductions that used global memory, but didn't reduce
across threads in a warp did not have enough global memory
allocated for their intermediate results. These reductions
that were non-contiguous in their reduced dimension and
large enough to benefit from reducing across blocks in a
grid.

Fixes #13209
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13211

Differential Revision: D12815772

Pulled By: colesbury

fbshipit-source-id: f78be2cb302e7567a76097ca3ba1e7b801c0cdad
2018-10-29 10:23:30 -07:00
vishwakftw
1fe8278559 Batched Inverse (#9949)
Summary:
Complete billing of changes:

Related to Batch Inverse:
- [x] Add batched inverse (CPU)
- [x] Add batched inverse (CUDA)
- [x] Modify autograd entry
- [x] Add tests
  - [x] test_autograd
  - [x] test_cuda
  - [x] test_torch
- [x] Modify docs
- [x] Remove `_batch_inverse` in `MultivariateNormal`.
- [x] Allow batch matrices as inputs for negative powers in `matrix_power`

Miscellaneous modifications:
- [x] Move all batch operations to BatchLinearAlgebra.cpp/.cu and provide general framework for adding more batch ops.
- [x] Add a RAII structure for MAGMA queue management.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9949

Differential Revision: D10559089

Pulled By: zou3519

fbshipit-source-id: 7da24977f8a79d97dd42883302e13e708c1726e4
2018-10-27 23:42:46 -07:00
Zachary DeVito
dae7616078 Shard all of tests based on how many tests exist. (#13160)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13160

Reduces pytorch_core build from 2 hours to 30 minutes

Reviewed By: soumith, dzhulgakov

Differential Revision: D10524261

fbshipit-source-id: 97270ac73404b5ea4c264cd0e9d8d4b1be79b0e9
2018-10-26 18:20:34 -07:00
James Sun
f4944f0f8a Rename test/common.py to test/common_utils.py (#12794)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12794

common.py is used in base_module for almost all tests in test/. The
name of this file is so common that can easily conflict with other dependencies
if they happen to have another common.py in the base module. Rename the file to
avoid conflict.

Reviewed By: orionr

Differential Revision: D10438204

fbshipit-source-id: 6a996c14980722330be0a9fd3a54c20af4b3d380
2018-10-17 23:04:29 -07:00
Thomas Viehmann
d80a3eb549 Set philox seed and offset on cuda manual_seed (#12677)
Summary:
Fixes: #12669

Thank you Changmao Cheng for reporting this on the forum with a small example!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12677

Differential Revision: D10391989

Pulled By: ezyang

fbshipit-source-id: 5aa7a705bdb8ce6511a8eb1b3a207f22741046bf
2018-10-15 17:45:59 -07:00
vishwakftw
0740a5d521 compute_uv for SVD (#12517)
Summary:
Adds a `compute_uv` argument that defaults to `True` for optionally computing the singular vectors during SVD.

Closes https://github.com/pytorch/pytorch/issues/12420 .
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12517

Differential Revision: D10384554

Pulled By: SsnL

fbshipit-source-id: 704998a257afa815eda901b8ae830e8a661695be
2018-10-15 12:35:56 -07:00
vishwakftw
48bc57fa8d Introduce chain_matmul (#12380)
Summary:
- This was one of the few functions left out from the list of functions in
  NumPy's `linalg` module
- `multi_mm` is particularly useful for DL research, for quick analysis of
  deep linear networks
- Added tests and doc string
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12380

Differential Revision: D10357136

Pulled By: SsnL

fbshipit-source-id: 52b44fa18d6409bdeb76cbbb164fe4e88224458e
2018-10-12 03:58:12 -07:00
Ailing Zhang
8734b174ca Multinomial raise error (#12490)
Summary:
Fixes #12260 #2896

```
torch.multinomial(torch.FloatTensor([0, 1, 0, 0]), 3, replacement=False)
```
The old behavior is that we return `0` after we run out of postive categories. Now we raise an error based on discussion in the issue thread.

- Add testcase for cpu & cuda case, in cuda case `n_samples=1` is a simple special case, so we test against `n_sample=2` instead.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12490

Differential Revision: D10278794

Pulled By: ailzhang

fbshipit-source-id: d04de7a60f60d0c0d648b975db3f3961fcf42db1
2018-10-10 20:39:04 -07:00
iotamudelta
64f707cd26 Enable more unit tests (ROCm 255) (#12486)
Summary:
* Enable more tests that relied on CPU LAPACK at compile time.
* enabled min/max tests in test_cuda (ROCm 236)

bddppq ezyang

Tests ran as part of the ROCm CI here: https://github.com/ROCmSoftwarePlatform/pytorch/pull/255
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12486

Differential Revision: D10262534

Pulled By: ezyang

fbshipit-source-id: 167a06fc8232af006f4b33dcc625815fd4b06d6b
2018-10-09 15:38:19 -07:00
iotamudelta
a2ebbccc9f fix unit tests on CI
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/12187

Differential Revision: D10118483

Pulled By: bddppq

fbshipit-source-id: 986c8fb48d61e00103c713548a50e74489a0e442
2018-09-28 23:11:55 -07:00
Sam Gross
b263078bc3 Fix CUDA division by a scalar on large arrays. (#12023)
Summary:
The gpu_unary_kernel function was not handling arrays that
cannot use 32-bit indexing. This functions was only called directly
by CUDA division by a scalar. Other arithmetic operations go through
gpu_binary_kernel, which already properly handled large arrays.

This bug sometimes manifested as a crash and sometimes as an incorrect
answer.

Fixes #11788
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12023

Differential Revision: D10034017

Pulled By: colesbury

fbshipit-source-id: b17300f327de54035746bf02f576766007c9b144
2018-09-25 13:10:25 -07:00
Sam Gross
1c09bfde1b Make promoteType(half, integer) -> half (#11941)
Summary:
Changes the result type of half type and any integer type to return half
type (instead of float or double).

This is based on top of #11808. The first new commit is "Make promoteType(half, integer) -> half". I'll rebase on top of master once that PR lands.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11941

Differential Revision: D10014122

Pulled By: colesbury

fbshipit-source-id: 16a5eb3406a5712069201d872d8736d0599e9411
2018-09-24 13:55:42 -07:00
Sam Gross
1cf5b0c7c1 Fix casting logic for 0d CPU tensors in CUDA ops (#11808)
Summary:
Previously, we didn't cast any 0-dim tensors used in CUDA operations. We
can only avoid the casts for 0-dim CPU tensors used in CUDA operations.

Fixes #11795
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11808

Differential Revision: D9922406

Pulled By: colesbury

fbshipit-source-id: 940b8a8534770aa5cd70d5d09b96be0f0f8146ff
2018-09-21 14:19:56 -07:00
Thomas Viehmann
6834dcab1c Align cuda multinomial without replacement to CPU behaviour (#11933)
Summary:
We do this by being more NaN tolerant.

Fixes: #9062
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11933

Differential Revision: D9991129

Pulled By: soumith

fbshipit-source-id: c99b04462c1bee90d00eeabb0c111de12f855f4d
2018-09-21 11:04:17 -07:00
Tongzhou Wang
24e958a0a7 Move bernoulli into ATen (#10273)
Summary:
+ https://github.com/pytorch/pytorch/issues/10236 : torch.bernoulli's out kwarg is broken
  fixed in moving `bernoulli_out` to ATen
+ https://github.com/pytorch/pytorch/issues/9917 : BUG torch.bernoulli(p.expand(shape)) is broken
  fixed in moving all `bernoulli` ops in ATen to use the modern apply utils methods
+ https://github.com/pytorch/pytorch/issues/10357 : torch.bernoulli inconsistent gpu/cpu results
  fixed by adding CUDA asserts

In order to use `curand_uniform4`, I made some changes to `CUDAApplyUtils.cuh`. Specifically, I introduced an optional template parameter `int step` to the `CUDA_tensor_applyN` methods, representing that we want to process `step` values at each time for each of the `N` tensors.

The calling convention for `step = 1` (default) isn't changed. But if `step > 1`, the given lambda `op` must take in `int n` as its first argument, representing the number of valid values, because there may not be full `step` values at the boundary. E.g., here is what the `bernoulli(self, p_tensor)` call look like:
```cpp

  // The template argument `4` below indicates that we want to operate on four
  // element at each time. See NOTE [ CUDA_tensor_applyN helpers ] for details.
  at::cuda::CUDA_tensor_apply2<scalar_t, prob_t, 4>(
      ret, p,
      [seeds] __device__(
          int n, scalar_t& v1, scalar_t& v2, scalar_t& v3, scalar_t& v4,
          const prob_t& p1, const prob_t& p2, const prob_t& p3, const prob_t& p4) {
        curandStatePhilox4_32_10_t state;
        curand_init(
            seeds.first,
            blockIdx.x * blockDim.x + threadIdx.x,
            seeds.second,
            &state);
        float4 rand = curand_uniform4(&state);
        switch (n) {
          case 4: {
            assert(0 <= p4 && p4 <= 1);
            v4 = static_cast<scalar_t>(rand.w <= p4);
          }
          case 3: {
            assert(0 <= p3 && p3 <= 1);
            v3 = static_cast<scalar_t>(rand.z <= p3);
          }
          case 2: {
            assert(0 <= p2 && p2 <= 1);
            v2 = static_cast<scalar_t>(rand.y <= p2);
          }
          case 1: {
            assert(0 <= p1 && p1 <= 1);
            v1 = static_cast<scalar_t>(rand.x <= p1);
          }
        }
      }
    );
```

Benchmarking on `torch.rand(200, 300, 400)` 20 times, each time with 20 loops:

post patch
```
➜  ~ numactl --cpunodebind 1 --membind 1 -- taskset -c 12,13,14,15,16,17,18,19,20,21,22,23 env CUDA_LAUNCH_BLOCKING=1 python bern.py
torch.bernoulli(x)
6.841588497161865 +- 0.05413117632269859
torch.bernoulli(xc)
0.05963418632745743 +- 0.0008014909108169377
x.bernoulli_()
0.4024486541748047 +- 0.0021550932433456182
xc.bernoulli_()
0.02167394384741783 +- 2.3818030967959203e-05

```

pre-patch
```
➜  ~ numactl --cpunodebind 1 --membind 1 -- taskset -c 12,13,14,15,16,17,18,19,20,21,22,23 env CUDA_LAUNCH_BLOCKING=1 python bern.py
torch.bernoulli(x)
12.394511222839355 +- 0.0966421514749527
torch.bernoulli(xc)
0.08970972150564194 +- 0.0038722590543329716
x.bernoulli_()
1.654480218887329 +- 0.02364428900182247
xc.bernoulli_()
0.058352887630462646 +- 0.003094920190051198

```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10273

Differential Revision: D9831294

Pulled By: SsnL

fbshipit-source-id: 65e0655a36b90d5278b675d35cb5327751604088
2018-09-19 16:45:47 -07:00
Thomas Viehmann
efc0f6784a Move some bmm/baddbmm to ATen (#11292)
Summary:
- Incorporates MKL addition by mingfeima  Thank you! (but all errors are my own)
- Native CPU implementation: defer to matrix multiplication for
  small batches and parallelize over batch dimension for large
  batches.
- Add bmm test for CUDA just to be sure.

This is a partial fix for #10661, getting down to a factor ~5.
Considerable overhead is incurred for the setup in einsum. It might
be more efficient to eventually define an optimized contraction
functions for arbitrary and several dimensions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11292

Differential Revision: D9784941

Pulled By: ezyang

fbshipit-source-id: f6dded2c6f5e8f0461fb38f31f9a824992a58358
2018-09-12 07:09:55 -07:00
Richard Zou
040d75d455 Add option to use CUDA memory leak testing as a context manager (#11380)
Summary:
cc SsnL
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11380

Reviewed By: ezyang

Differential Revision: D9705877

Pulled By: zou3519

fbshipit-source-id: 02470c25236f57fa02f4ac9d7ed63d38a6355db2
2018-09-10 12:40:15 -07:00
Tongzhou Wang
d3f98b5ffc Add matrix power (#11421)
Summary:
vishwakftw Your patch needed some updates because the default native function dispatches changed from `[function, method]` to `[function]`. The CI was run before that change happened so it still shows green, but the internal test caught it.

I did some changes when rebasing and updating so I didn't just force push to your branch. Let's see if this passes CI and internal test. If it does, let me know if you want me to force push to your branch or use this PR instead.

Note to reviewers: patch was already approved at #10068 .

cc yf225
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11421

Differential Revision: D9733407

Pulled By: SsnL

fbshipit-source-id: cf2ed293bb9942dcc5158934ff4def2f63252599
2018-09-08 15:25:56 -07:00
iotamudelta
24eb5ad0c5 Fix unit tests on CI (#11191)
Summary:
Disables two of the  unit tests in test_cuda that got introduced after test_cuda was enabled that fail on ROCm.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11191

Differential Revision: D9628702

Pulled By: ezyang

fbshipit-source-id: 4c298c728f42bb43d39b57967aa3e44385980265
2018-09-02 21:54:47 -07:00
iotamudelta
33c7cc13ca improve docker packages, fix bugs, enable tests, enable FFT (#10893)
Summary:
* improve docker packages (install OpenBLAS to have at-compile-time LAPACK functionality w/ optimizations for both Intel and AMD CPUs)
* integrate rocFFT (i.e., enable Fourier functionality)
* fix bugs in ROCm caused by wrong warp size
* enable more test sets, skip the tests that don't work on ROCm yet
* don't disable asserts any longer in hipification
* small improvements
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10893

Differential Revision: D9615053

Pulled By: ezyang

fbshipit-source-id: 864b4d27bf089421f7dfd8065e5017f9ea2f7b3b
2018-09-02 08:54:42 -07:00
Tongzhou Wang
1350f76b62 Fix max and min with inf on CUDA (#11091)
Summary:
Fixes #10237 #11084

cc vishwakftw
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11091

Differential Revision: D9582859

Pulled By: SsnL

fbshipit-source-id: 3991c0a2af65ba82fa815b82f9e6b2107912fd10
2018-09-01 23:09:23 -07:00
Ailing Zhang
a9469c9c8a Fill eigenvector with zeros if not required (#10645)
Summary:
Fix #10345, which only happens in CUDA case.

* Instead of returning some random buffer, we fill it with zeros.

* update torch.symeig doc.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10645

Reviewed By: soumith

Differential Revision: D9395762

Pulled By: ailzhang

fbshipit-source-id: 0f3ed9bb6a919a9c1a4b8eb45188f65a68bfa9ba
2018-08-29 10:55:22 -07:00
Tongzhou Wang
8e33451e2e Make torch.cuda.* take device objects; Update distributed docs (#10833)
Summary:
Commits:

1. Make `torch.cuda.*` take device objects
2. Update `torch.distributed` docs to emphasize calling `torch.cuda.set_device` before `init_process_group`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10833

Differential Revision: D9514241

Pulled By: SsnL

fbshipit-source-id: 2497464305fb1e63d6c495291a5744aaa7e2696e
2018-08-27 15:24:42 -07:00
Vishwak Srinivasan
5fb9b31ed5 Add matrix_rank (#10338)
Summary:
- Similar functionality as NumPy
- Added doc string
- Added tests

Differential Revision: D9240850

Pulled By: SsnL

fbshipit-source-id: 1d04cfadb076e99e03bdf699bc41b8fac06831bf
2018-08-22 09:58:38 -07:00
Thomas Viehmann
484395edfb Fix corner case with torch.multinomial (#9960)
Summary:
In the shortcut for n_sample=1, when category 0 has 0 weight,
we should not map the (uniform) sample 0 to category 0.
The conversion uniform->multinomial was apparently written to work on
a (0,1] range (like curand uses), but PyTorch uses a [0,1) range.

Fixes: #4858. Thank you, Roy Fejgin for reporting.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9960

Reviewed By: soumith

Differential Revision: D9341793

Pulled By: ailzhang

fbshipit-source-id: 6b1a96419a7bc58cc594f761f34c6408ff6354cf
2018-08-15 13:25:39 -07:00
Sam Gross
829d763c69 Implement add, sub, mul, div using TensorIterator (#8919)
Summary:
```
This adds TensorIterator, a helper class for computing element-wise
operations that's intended to replace the CPU and CUDA apply utils
functions.

CPU kernels are implemented as functions that operate on strided 1-d
tensors compared to CPUApplyUtils which operated individual elements. This
allows the kernels to handle vectorization, while TensorIterator handles
parallelization and non-coalesced dimensions.

GPU kernels continue to operate on elements, but the number of
specializations is reduced. The contiguous case remains the same. The
non-contiguous case uses a single (reduced) shape for all operands and
the fast integer division from THCIntegerDivider. To avoid extra
specializations for indexing with 64-bits, large operations are split
into smaller operations that can be indexed with 32-bits.

Major semantic changes:

 - No more s_add, s_mul, s_div, or s_sub. Broadcasting is handled by
   TensorIterator. The autograd engine performs the reduction assuming
   standard broadcasting if the gradient shape does not match the
   expected shape. Functions that do not use standard broadcasting rules
   should either continue to trace the expand calls or handle the
   reduction in their derivative formula.

 - Use ONNX v7, which supports broadcasting ops.

Performance impact:

 - Small increased fixed overhead (~0.5 us)
 - Larger overhead for wrapped numbers (~2.5 us)
 - No significant change for ops on contiguous tensors
 - Much faster worst-case performance for non-contiguous GPU tensors
 - Faster CPU bias addition (~2x)
 - Faster GPU bias addition (~30% faster)

Future work:

 - Decrease overhead, especially for wrapping numbers in Tensors
 - Handle general inter-type operations
 - Extend to unary ops and reductions
 - Use buffering for compute-bound operations on non-contiguous tensors
   (pull in from CPUApplyUtils)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/8919

Differential Revision: D8677600

Pulled By: colesbury

fbshipit-source-id: 61bc9cc2a36931dfd00eb7153501003fe0584afd
2018-07-27 14:43:24 -07:00
Wei Yang
302adb7cc8 added torch.rot90() to ATen (#8628)
Summary:
1. fixes #6271
2. implemented torch.rot90() following [numpy.rot90()](6a58e25703/numpy/lib/function_base.py (L54-L138))
Pull Request resolved: https://github.com/pytorch/pytorch/pull/8628

Reviewed By: ezyang

Differential Revision: D8987860

Pulled By: weiyangfb

fbshipit-source-id: 8dac3b2a1f6d3288672977aba8b547706ce97fe9
2018-07-25 15:11:44 -07:00
Vishwak Srinivasan
360c1bbd5b Add multivariate log-gamma (mvlgamma) (#9451)
Summary:
1. Add tests in test_cuda, test_torch
2. Add doc strings

Closes https://github.com/pytorch/pytorch/issues/9378 .

Differential Revision: D8859746

Pulled By: ezyang

fbshipit-source-id: 939c309d90940a7aa08f53004c9e7b3b1c9cf54e
2018-07-24 12:10:10 -07:00
Tongzhou Wang
27455e9c78 Use _six for inf and nan (#9500)
Summary:
Things like `float('inf')` are actually quite expensive.
```py
In [1]: import math

In [2]: %timeit -n 200 math.inf
49.3 ns ± 1.42 ns per loop (mean ± std. dev. of 7 runs, 200 loops each)

In [3]: %timeit -n 200 float('inf')
194 ns ± 39.1 ns per loop (mean ± std. dev. of 7 runs, 200 loops each)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9500

Reviewed By: soumith

Differential Revision: D8876229

Pulled By: SsnL

fbshipit-source-id: 78602b76bb53d5588910b58270930c0bd413d2d7
2018-07-18 10:40:29 -07:00
Tongzhou Wang
050a2588b5 change stft to have consistent signature with librosa (#9497)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9497

Fixes #7883 by using `rfft`.

It's worth noting that this is BC breaking. And it's impossible to detect the change because the two signatures before and after this change supports a common subset of calling patterns, e.g., `stft(Tensor, int, int)`. (some other calling patterns will raise error).

soumith and I plan to change the current `stft` interface because it is a bit messy and non-standard. rafaelvalle suggested us that `librosa` is a good reference API to align with. After discussing with soumith and ezyang , and given that `stft` is only out for 1 release, I decide to go with directly changing the signature. Also, my understanding is that most researchers in this field will welcome this change as `librosa` seems to be the golden-standard here. (it doesn't yet support all `pad_mode` but those will become available if added to `F.pad`.)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9308

Reviewed By: ezyang

Differential Revision: D8806148

Pulled By: SsnL

fbshipit-source-id: f6e8777d0c34d4a4d7024e638dc9c63242e8bb58
2018-07-17 10:55:43 -07:00
Brian W. Hart
7d2a17876f test_cuda: ensure tests use float and adjust HalfTensor tolerances (#9475)
Summary:
test_cuda.py uses routine 'number' to prepare many testscases.
number should return a floating point value for float-type tensor
types, or integer otherwise. But number's test to classify the type
is incorrect, so it always returns the integer value.
(type(t).__name__ is always 'torch.tensortype' so never matches
'Double', 'Float', or 'Half'.)

Update number to use the existing is_floating() helper to make the
check.

The change to number causes a few tests to fail for HalfTensor. Relax
the tolerance for those in line with other HalfTensor testcases. The
failing tests--for addcdiv and fill--were not previously relaxed for
HalfTensor so are held to the over-strict 1e-5 default tolerance.

Finally, update a couple other tests for HalfTensor type to use the
existing is_half() helper.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9475

Reviewed By: yf225

Differential Revision: D8872112

Pulled By: ezyang

fbshipit-source-id: 016e3e15adb23f6606bd4c08218954c1396699db
2018-07-17 10:25:17 -07:00
Alican Bozkurt
d017e1798f add erfc
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/9366

Differential Revision: D8816768

Pulled By: soumith

fbshipit-source-id: 7d709f932cf156a2e7ec71c710837beb7f647d66
2018-07-12 08:32:02 -07:00
Tongzhou Wang
7b25cbbef9 Test nn.Module on non-contiguous inputs (#9114)
Summary:
1. Let `ModuleTest` raise when they fail on non-contiguous inputs. Fix legacy modules.
2. Fix BN (both THNN and cuDNN) not working on non-contiguous inputs.
3. Fix CUDA EmbeddingBag not working on non-contiguous inputs. To prevent calling `.contiguous()` on in both `forward` and `backward`,
  a. prefix all current `embedding_bag*` functions with `_`, indicating that they require input to be contiguous (there is a check in each function).
  b. create `embedding_bag`, which makes input arguments `.contiguous()`, and calls `_embedding_bag`
3. Make many ATen `embedding*` functions to work on non-contiguous inputs so we don't need to call `input = input.contiguous()` in Python `nn.functional.embedding`.
4. Fix dense-sparse addition when the sparse input is not coalesced and indices or values tensor is not contiguous. This came up in the test cases of Embedding modules with `sparse=True`. Added tests.
5. Update `TensorUtils.cpp` to use `AT_*` macros.

Request:
review from cpuhrsch on the `Embedding*` changes.
review from ezyang on ATen sparse & BN changes.
Closes https://github.com/pytorch/pytorch/pull/9114

Differential Revision: D8717299

Pulled By: SsnL

fbshipit-source-id: 0acc6f1c9522b5b605361e75112c16bbe1e98527
2018-07-05 21:09:34 -07:00
Vishwak Srinivasan
14cbd9adb8 Implement torch.pinverse : Pseudo-inverse (#9052)
Summary:
1. Used SVD to compute.
2. Tests in test_autograd, test_cuda and test_torch
3. Doc strings in _torch_docs.py and _tensor_docs.py

Closes #6187
Closes https://github.com/pytorch/pytorch/pull/9052

Reviewed By: soumith

Differential Revision: D8714628

Pulled By: SsnL

fbshipit-source-id: 7e006c9d138b9f49e703bd0ffdabe6253be78dd9
2018-07-05 09:11:24 -07:00
Tongzhou Wang
179807a8c7 Fix MAGMA svd and eig (#9082)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/9079

There is room for speed-up for both functions (see https://github.com/pytorch/pytorch/issues/9083), but let's get this in to unblock #9052 .
Closes https://github.com/pytorch/pytorch/pull/9082

Reviewed By: ezyang

Differential Revision: D8711687

Pulled By: SsnL

fbshipit-source-id: f043a9bf55cb6aec5126c3331d35761f7aa3f8e3
2018-07-01 22:24:17 -07:00
Will Feng
90fd4df695 Add flag for disabling tests with multiprocessing spawn start method (#9061)
Summary:
This will resolve some of the timeout issues in CPU and GPU tests internally.
Closes https://github.com/pytorch/pytorch/pull/9061

Reviewed By: ezyang

Differential Revision: D8707471

Pulled By: yf225

fbshipit-source-id: 9dc82a2c9da0c540ae015442f74b9b2b1a67a246
2018-06-30 14:39:11 -07:00
Tongzhou Wang
12904edae9
Test that broadcast doesn't copy when dst and src devices are the same (#8803)
* test that broadcast doesn't copy when dst and src devices are the same

* only test if input is cuda
2018-06-22 17:36:19 -04:00
Vishwak Srinivasan
1d4cf095b8 Add CUDA to logspace and linspace declarations in Declarations.cwrap (#8798)
* Add CUDA to logspace and linspace

These functions are already implemented, but where not exposed. Fixes https://github.com/pytorch/pytorch/issues/8786 .

* Add small tests
2018-06-22 16:14:27 -04:00