Summary:
The mkldnn-bridge is upgraded in this PR to support DNNLOWP operators.
Meanwhile, APIs have been updated in caffe2 to use latest version.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16308
Differential Revision: D14697018
Pulled By: yinghai
fbshipit-source-id: ca952589098accb08295fd5aa92924c61e74d69c
Summary:
For MKL-DNN,the filter data will be reorderd to primitive format, it takes a lot of time.
So the patch provide a method to convert filter format before training.
And "OptimizeForIdeep" will be changed to "OptimizeForMkldnn" in this patch.
This patch depends on https://github.com/pytorch/pytorch/pull/12866
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15171
Differential Revision: D14590741
Pulled By: yinghai
fbshipit-source-id: 07971c9977edac3c8eec08ca2c39cda639683492
Summary:
In blob feeder for ideep device, the wrong device option is given and led to a crash issue.
This patch aims to correct the device option to fix this bug.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18552
Differential Revision: D14679838
Pulled By: yinghai
fbshipit-source-id: bde11e6a6fe44822166881dcb7c9bd0b34b4ecf3
Summary:
Based on offline discussion it should be less surprising to the users of existing code. Thus caffe2::Tensor is now a move-only class (as it used to be), explicit calls to UnsafeSharedInstance() are necessary to get shared_ptr behavior.
This change also identified a few places that misused the copy constructor - those are fixed
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15416
Reviewed By: Yangqing
Differential Revision: D13524598
fbshipit-source-id: aea12d6dff77342606fa88ce4ddddbff266245a7
Summary:
support 0 size in any of the tensor dimensions in mkldnn
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15295
Differential Revision: D13573747
Pulled By: yinghai
fbshipit-source-id: 5bf7a0b9e2567e80f44981a7823be5407fc94e53
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14196
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13641
FeedTensor function used to take a pointer to Tensor and feed the content using Resize
and mutable_data, but since Tensor is a pointer now, we can just return a Tensor instead.
Reviewed By: dzhulgakov
Differential Revision: D13091163
fbshipit-source-id: 9abf2fd320baca76e050530c500dd29f8e2d0211
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13641
FeedTensor function used to take a pointer to Tensor and feed the content using Resize
and mutable_data, but since Tensor is a pointer now, we can just return a Tensor instead.
Reviewed By: ezyang
Differential Revision: D12873145
fbshipit-source-id: 653735c20d611ff6ac9e380d8b3c721cb396a28f
Summary:
All usages of the `ndarray` construct have now been guarded with `USE_NUMPY`. This eliminates the requirement of NumPy while building PyTorch from source.
Fixes#11757
Reviewed By: Yangqing
Differential Revision: D10031862
Pulled By: SsnL
fbshipit-source-id: 32d84fd770a7714d544e2ca1895a3d7c75b3d712
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12043
Re-trying D9979976, this time with all call sites fixed.
D9979976 got reverted because there was a call site that wasn't covered by sandcastle it seems.
I fixed it and used 'grep' to ensure there aren't any more call sites in fbsource.
Reviewed By: ezyang
Differential Revision: D10026392
fbshipit-source-id: cd341514a8e53a40147ea0ee3e52f63bb6444157
Summary: The controller you requested could not be found. Original commit changeset: 2ea17724e223
Differential Revision:
D10026321
Ninja: stable broken
fbshipit-source-id: faf87cb7cc0f78c2c10d4aa6fceea279cd27acd6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11923
This is pre-work to allow moving Blob to ATen/core, which cannot depend on caffe2 anymore.
(1) Removing the Blob -> Tensor dependency allows us to move Blob to ATen/core and use it inside IValue without having to wait for the Tensor merge to be complete.
(2) In the final Blob design, we want it to be a very small class that doesn't have any special treatment for Tensor (or to be more correct, doesn't allow storing Tensor anymore), so this is anyhow the direction we want to go.
This changes call sites that will have to be moved to IValue later, but they cannot be moved to IValue directly, because for that, IValue first needs to be able to store Blob, which in turn first needs this diff and some other changes coming up in future diffs.
Codemods:
$ codemod --extensions h,hpp,c,cpp,cc "([a-zA-Z0-9_]+)\\.IsTensorType\\(" "BlobIsTensorType(\\1, "
$ codemod --extensions h,hpp,c,cpp,cc "([a-zA-Z0-9_]+)->IsTensorType\\(" "BlobIsTensorType(*\\1, "
$ codemod --extensions h,hpp,c,cpp,cc "([a-zA-Z0-9_]+)\\.GetMutableTensor\\(" "BlobGetMutableTensor(\\1, "
$ codemod --extensions h,hpp,c,cpp,cc "([a-zA-Z0-9_]+)->GetMutableTensor\\(" "BlobGetMutableTensor(*\\1, "
It is, however, not only these codemods because regex based refactoring was only able to match a small amount of the call sites. To catch more, I wouldn've needed a AST aware tool like clangr, which I didn't figure out how to use.
Reviewed By: ezyang
Differential Revision: D9979976
fbshipit-source-id: 2ea17724e223b5b73b44f99362727759ca689e61
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11254
Previously we use DeviceType in caffe2.proto directly, but it's an `enum` and have implicit conversion to int, which does not have type safety, e.g. we have to explicitly check for a device type is valid in event.h:
```
template <int d>
struct EventCreateFunctionRegisterer {
explicit EventCreateFunctionRegisterer(EventCreateFunction f) {
static_assert(d < MaxDeviceTypes, "");
Event::event_creator_[d] = f;
}
};
```
at::DeviceType is an `enum class`, and it does not have implicit conversion to int, and provides better type safety guarantees. In this diff we have done the following refactor(taking CPU as an example):
1. caffe2::DeviceType → caffe2::DeviceTypeProto
2. caffe2::CPU → caffe2::PROTO_CPU
3. caffe2::DeviceType = at::DeviceType
4. caffe2::CPU = at::DeviceType::CPU
codemod -d caffe2/caffe2 --extensions h,cc,cpp 'device_type\(\), ' 'device_type(), PROTO_'
+ some manual changes
In short, after this diff, in c++, caffe2::CPU refers to the at::DeviceType::CPU and the old proto caffe2::CPU will be caffe2::PROTO_CPU.
In python side, we have a temporary workaround that alias `caffe2_pb2.CPU = caffe2_pb2.PROOT_CPU` to make the change easier to review and this will be removed later.
Reviewed By: ezyang
Differential Revision: D9545704
fbshipit-source-id: 461a28a4ca74e616d3ee183a607078a717fd38a7
Summary:
1. Support ops needed for inference of Faster-RCNN/Mask-RCNN needed in Detectron, mostly direct fallbacks.
2. Use CPU device to hold 0-dim tensors and integer tensors in both fallback op and blob feeder, needed by Detectron models.
3. Ignore 0-dim tensor in MKL-DNN concat operator.
4. Generate dynamic library of Detectron module for CPU device.
This PR obsoletes #9164.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10157
Differential Revision: D9276837
Pulled By: yinghai
fbshipit-source-id: dc364932ae4a2e7fcefdee70b5fce3c0cee91b6f