Update fused kernels and call _safe_softmax from SDPA (#133882)

# UPDATE:
This is  take 3 of https://github.com/pytorch/pytorch/pull/131863 which was landed via co dev but not applying correclty

# Summary
Changes the stance of SDPA on what to do for fully masked out rows

## Current Behavior
Several PyTorch users have expressed frustration over this issue:
- https://github.com/pytorch/pytorch/issues/41508
- https://github.com/pytorch/pytorch/issues/103749
- https://github.com/pytorch/pytorch/issues/103963

These are significant issues with extensive discussion but no satisfactory resolution. The PyTorch team's consensus, as stated here:
https://github.com/pytorch/pytorch/issues/24816#issuecomment-524415617

Can be paraphrased as follows:

When passing in fully masked out rows, attention becomes ambiguous. We have two main options:

1. Uniformly attend to all values:
   ```python
   scores[masked_out_rows] = 1 / len(row)
   out[masked_out_rows] = 1 / len(row) * value
   ```

2. Decide that attention between no queries (masked) and no keys (masked) is meaningless:
   ```python
   output[fully_masked_rows] = NaN
   ```

We went with option 2. Partially because it was easier to implement, but also people argued that users can slice the output to remove the NaNs:
``` Python
>fill_value = -float("inf")
>row0 = torch.randn(4)
>row1 = torch.tensor([(fill_value for _ in range(4)])
>matrix = torch.stack([row0, row1]).requires_grad_(True)
>out = torch.softmax(matrix, 1)
>out = out[0]
>print(out)
tensor([0.5377, 0.2729, 0.0692, 0.1201])
```
Cool, problem solved. But what happends when you call backwards..
```Python
>out.backward(torch.ones_like(out))
>print(matrix.grad)
tensor([[3.0957e-08, 1.4157e-08, 7.7802e-10, 1.3713e-08],
        [       nan,        nan,        nan,        nan]])
```
Those pesky NaNs are back!

## Why do we see NaNs today?

The core of the problem revolves around using softmax function in sdpa:

```python
> row = torch.tensor([(-float("inf")) for _ in range(4)])
> torch.softmax(row, 0)
tensor([nan, nan, nan, nan])
```

## Quick Aside: Masking in Attention

Attention itself doesn't have a concept of masking. The `sdpa` function has an argument called `attn_mask`, which would be more accurately named `attn_bias`. This is because we don't actually "mask" entries when computing attention. Instead, due to implementation details([performance](https://github.com/pytorch/pytorch/issues/25110#issuecomment-524519087)), we add a value to the masked-out query/key pairs.

We use a large negative number (typically -inf) to decrease the attention weight, as softmax assigns more weight to larger values.

## Alternative Approaches

If we use a very large negative number instead of -inf:

```python
> row = torch.tensor([(-1e6) for _ in range(4)])
> torch.softmax(row, 0)
tensor([0.2500, 0.2500, 0.2500, 0.2500])
```
However if users always remembered to "slice" out their outputs i.e.:
```Python
>fill_value = -1e6
>...
>out.backward(torch.ones_like(out))
>print(matrix.grad)
tensor([[-0.0563, -0.0564,  0.1613, -0.0486],
        [ 0.0000,  0.0000,  0.0000,  0.0000]])
```
This would bring us back into a better state.

## A Third Option

We don't necessarily need to alter the behavior of softmax for -inf or very large negative numbers. The fundamental goal is to exclude certain query/key pairs from attention, regardless of the underlying implementation.

This PR implements the new semantic for masking w/ attention in fully masked-out rows:
```python
out[masked_out_rows] = 0
```

**Important Note**: This idea isn't entirely new. The [MaskedTensor](https://pytorch.org/tutorials/prototype/maskedtensor_overview#safe-softmax) prototype, a tensor subclass, was designed to handle such cases. However, it remains a prototype feature and hasn't gained widespread adoption.

## Details
This PR stack does 3 things:
1. Adds a PRIVATE _safe_softmax op
2. Updates semantic for flash_cpu fused kernel
3. Updates semantic for efficient_cuda fused kernel

_safe_softmax is not supposed to be used generically and is only meant to be used within the context of SDPA. Due to this fact instead of decomposing softmax and checking for -inf rows we instead "cheat" and use nan_to_num.

Why I think this is okay? (please find a counter point if avail)
There are multiple ways NaNs can emerge. For the fully masked out rows case nan_to_num works. But what if there were other NaNs, wouldn't this silently remove them?

The only case that this can happen is if the input itself had a NaN or an Inf
For example:
```Python
a = torch.ones([4], requires_grad=False, dtype=torch.float16)
a[1] = torch.finfo(torch.float16).max
print(a.softmax(-1))
```
Will return
`tensor([0., 1., 0., 0.], dtype=torch.float16)`

Where
```Python
a = torch.ones([4], requires_grad=False, dtype=torch.float16)
a[1] = float("inf")
a.softmax(-1)
```
returns:
`tensor([nan, nan, nan, nan], dtype=torch.float16)`

If we dont want to even allow for the possibility of "inf" or "NaN" attention scores to be converted to 0 then we can implemented it something like this

```Python
max = torch.max(a, dim=-1, keepdim=True)
exp = torch.exp(a - max.values)
denom = torch.sum(exp, dim=-1, keepdim=True)
softmax = exp / denom
softmax = torch.where(max.values == float('-inf'), 0.0, softmax)
```
however we would be paying for this in math performance.

## Why Now
I think one point that has substantially changed where PyTorch should lie on this argument is the fact that we have fused implementations for SDPA now. And these fused implementations allow us to easily and performantly support this new semantic.

Differential Revision: [D61418679](https://our.internmc.facebook.com/intern/diff/D61418679)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133882
Approved by: https://github.com/soulitzer
This commit is contained in:
drisspg 2024-08-19 11:36:47 -07:00 committed by PyTorch MergeBot
parent f1dc3b108a
commit fb26b84390
13 changed files with 194 additions and 19 deletions

View File

@ -452,9 +452,15 @@ void cpu_flash_attention(
dst_data,
headSize);
}
// dst <- dst / sum[row]
// reorder MHA output with strides
for (int64_t row = 0; row < qBlockSize; ++row) {
// Row sums for full masked out rows are 0, we set them to 1
// in order to avoid NaNs in the output and instead set fully
// masked out rows to 0
qk_max_data[row] = qk_max_data[row] == -std::numeric_limits<accum_t>::infinity() ? 0 : qk_max_data[row];
qk_sum_data[row] = qk_sum_data[row] == 0 ? 1 : qk_sum_data[row];
accum_t sum_reciprocal = 1 / qk_sum_data[row];
vec::map<scalar_t>(
[sum_reciprocal](Vec x) { return x * Vec(sum_reciprocal); },

View File

@ -8890,6 +8890,7 @@
variants: method, function
dispatch:
QuantizedCPU: eq_quantized_cpu
NestedTensorCPU, NestedTensorCUDA: eq_tensor_nested
tags: [core, pointwise]
- func: ge.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)

View File

@ -321,4 +321,13 @@ Tensor eq_scalar_nested(const Tensor& self, const Scalar& other) {
});
}
Tensor eq_tensor_nested(const Tensor& self, const Tensor& other) {
TORCH_CHECK(!other.is_nested(), "eq does not support nested tensor as other value.");
return NestedTensor_elementwise_Tensor(
self, other, "eq", false /*supports_striding*/,
[](const Tensor& b1, const Tensor& b2) {
return b1.eq(b2);
});
}
} // namespace at::native

View File

@ -647,9 +647,11 @@ Tensor _safe_softmax(
int64_t dim,
std::optional<ScalarType> dtype) {
auto out = at::softmax(self, dim, dtype);
const auto masked = self.eq(-std::numeric_limits<float>::infinity());
const auto neg_inf = at::scalar_tensor(-std::numeric_limits<float>::infinity(), at::TensorOptions().dtype(out.dtype()).device(out.device()));
const auto masked = self.eq(neg_inf);
const auto masked_rows = all(masked, dim, true);
return at::where(masked_rows, at::scalar_tensor(0.0, at::TensorOptions().dtype(out.dtype()).device(out.device())), out);
const auto zero = at::scalar_tensor(0.0, at::TensorOptions().dtype(out.dtype()).device(out.device()));
return at::where(masked_rows, zero, out);
}
// Computes scaled dot product attention on query, key and value tensors, using
// an optional attention mask if passed, and applying dropout if a probability
@ -837,7 +839,7 @@ std::tuple<Tensor, Tensor> _scaled_dot_product_attention_math(
attn.add_(*attn_mask);
}
}
attn = at::softmax(attn, -1);
attn = at::_safe_softmax(attn, -1);
if (dropout_p > 0.0) {
if (dropout_mask.has_value()) {
// In order to validate the correctness of the fused kernels, we need to

View File

@ -144,7 +144,10 @@ class MemoryEfficientAttentionNormalize {
multiplies<ComputeFragment> mul_add_source;
multiply_add<ComputeFragment> mul_add_accumulator;
ElementCompute alpha = isLast ? (1 / s_prime_[row]) : 1;
// Row sums for full masked out rows are 0, we set them to 1
// In order to avoid NaNs in the output and instead sem them to 0.
ElementCompute denom = s_prime_[row] == 0 ? 1 : s_prime_[row];
ElementCompute alpha = isLast ? (1 / denom) : 1;
ElementCompute beta = alpha * m_prime_[row];
intermediate = mul_add_source(beta, converted_source); // X = beta * C
@ -174,7 +177,10 @@ class MemoryEfficientAttentionNormalize {
ComputeFragment intermediate;
multiplies<ComputeFragment> mul_accumulator;
ElementCompute alpha = isLast ? (1 / s_prime_[row]) : 1;
// Row sums for full masked out rows are 0, we set them to 1
// In order to avoid NaNs in the output and instead sem them to 0.
ElementCompute denom = s_prime_[row] == 0 ? 1 : s_prime_[row];
ElementCompute alpha = isLast ? (1 / denom) : 1;
intermediate = mul_accumulator(
alpha, converted_accumulator); // X = alpha * C + uniform

View File

@ -1166,6 +1166,10 @@ struct AttentionKernel {
auto lse_dim = ceil_div((int32_t)p.num_queries, kAlignLSE) * kAlignLSE;
constexpr float kLog2e = 1.4426950408889634074; // log_2(e) = M_LOG2E
if (thread_id() < p.num_queries) {
// We set fully masked out rows to 0, the sumexp for masked out rows will be 0
// We update it to be 1 prior to calling log so that log(1) = 0
s_prime[thread_id()] = (s_prime[thread_id()] == 0) ? 1: s_prime[thread_id()];
mi[thread_id()] = (mi[thread_id()] == -cutlass::platform::numeric_limits<accum_t>::infinity()) ? 0: mi[thread_id()];
p.logsumexp_ptr[thread_id()] = accum_t(mi[thread_id()] / kLog2e) +
cutlass::fast_log(accum_t(s_prime[thread_id()]));
} else if (thread_id() < lse_dim) {

View File

@ -1791,9 +1791,6 @@ class TestOperators(TestCase):
), # NYI: forward-AD for soft_margin_loss_backward
xfail("nn.functional.ctc_loss", ""), # NYI: forward-AD for _ctc_loss
xfail("nn.functional.pdist", ""), # NYI: forward-AD with _pdist_forward
xfail(
"torch.ops.aten._safe_softmax.default"
), # NYI: forward-AD for _safe_softmax
skip("nn.functional.scaled_dot_product_attention"),
xfail("torch.ops.aten._efficient_attention_forward"), # outputs ints
xfail(
@ -1976,9 +1973,6 @@ class TestOperators(TestCase):
xfail(
"nn.functional.ctc_loss"
), # ForwardAD not implemented and no decomposition
xfail(
"torch.ops.aten._safe_softmax.default"
), # ForwardAD not implemented
xfail("nn.functional.dropout2d"), # calls random op
xfail("nn.functional.dropout3d"), # calls random op
xfail("nn.functional.dropout"), # calls random op

View File

@ -12387,12 +12387,20 @@ if __name__ == '__main__':
result = model(encoder_input, src_key_padding_mask=mask)
self.assertEqual(result.shape, ref_output.shape)
torch.testing.assert_close(result, ref_output, atol=atol, rtol=rtol)
# 1 values are masked. Since there is only 1 input embedding this
# will result in nan.
mask = torch.tensor([[1]], device=device) == 1
result = model(encoder_input, src_key_padding_mask=mask)
fast_path_device = result.is_cuda or result.is_cpu
result = result.cpu().detach().numpy()
self.assertTrue(np.isnan(result).all())
# Non Fast Paths
if training or not batch_first or TEST_WITH_CROSSREF or not fast_path_device:
# We changed the semenatic, on the non fast path so that fully masked out rows return
# 0 from attention thus NaNs should no longer be present and the output should be nonzero
# due to skip connections
self.assertTrue(not np.isnan(result).any())
else:
# Fast Paths
self.assertTrue(np.isnan(result).all())
# deterministic input
encoder_input = perm_fn(torch.tensor([[[1., 2., 3., 4.]],

View File

@ -347,6 +347,7 @@ class TestTransformers(NNTestCase):
@parametrize("key_padding_mask_dim", [2, None])
@parametrize("mask_dtype", [torch.bool, torch.float32])
def test_multiheadattention_fastpath_attn_mask(self, device, attn_mask_dim, key_padding_mask_dim, mask_dtype):
# MHA converts all
with torch.no_grad():
B = 2
L = 4
@ -356,7 +357,7 @@ class TestTransformers(NNTestCase):
if attn_mask_dim == 2:
attn_mask = make_tensor((L, L), dtype=mask_dtype, device=device)
elif attn_mask_dim == 3:
attn_mask = make_tensor((B * H, L, L), dtype=mask_dtype, device=device)
attn_mask = make_tensor((B, 1, L, L), dtype=mask_dtype, device=device).expand(B, H, L, L).reshape(B * H, L, L)
elif attn_mask_dim is None:
attn_mask = None
@ -372,7 +373,9 @@ class TestTransformers(NNTestCase):
out, _ = mha(X, X, X, attn_mask=attn_mask, key_padding_mask=key_padding_mask, need_weights=False)
mha.eval() # enable fast path
out_fp, _ = mha(X, X, X, attn_mask=attn_mask, key_padding_mask=key_padding_mask, need_weights=False)
self.assertEqual(out, out_fp)
# The FP kernel will return NaNs while the sdpa kernel which is ran when the fast path is turned off returns 0 instead
# of NaNs for fully masked rows
torch.testing.assert_close(out, out_fp.nan_to_num())
@parametrize("nhead", [1, 4, 8])
def test_transformerencoderlayer_src_mask(self, device, nhead):
@ -1156,6 +1159,25 @@ class TestTransformers(NNTestCase):
else:
actual = torch.nn.functional.scaled_dot_product_attention(
query, key, value, attn_mask, dropout_p, is_causal)
# This test the fully masked out rows case
if torch.isnan(expected).any():
row_sums = attn_mask.sum(dim=-1)
masked_out_rows = (row_sums == 0)
for _ in range((input_dim - attn_mask_dim) - 1):
masked_out_rows = masked_out_rows.unsqueeze(0)
masked_out_rows = masked_out_rows.expand(expected.shape[:-1])
# Slice out the fully masked rows from expected and actual
expected_masked_out = expected[masked_out_rows]
actual_masked_out = actual[masked_out_rows]
expected_all_nan = torch.isnan(expected_masked_out).all()
actual_all_zero = (actual_masked_out.abs().sum() == 0)
self.assertTrue(expected_all_nan)
self.assertTrue(actual_all_zero)
return
self.assertEqual(actual, expected)
@ -1961,7 +1983,7 @@ class TestSDPACpuOnly(NNTestCase):
@parametrize("n_head", [1, 3])
@parametrize("head_dim", [8])
@parametrize("mask_dim", [2, 4])
@parametrize("bool_mask", [0, 1])
@parametrize("bool_mask", [False, True])
@parametrize("train", [True, False])
@parametrize("casual", [True, False])
@parametrize("set_attn_mask", [True, False])
@ -2036,6 +2058,9 @@ class TestSDPACpuOnly(NNTestCase):
if dtype in [torch.bfloat16, torch.float16]:
math_ref = math_ref.to(dtype)
self.assertFalse(torch.isnan(math_ref).any())
self.assertFalse(torch.isnan(actual).any())
self.assertEqual(actual, math_ref, atol=tol.atol, rtol=tol.rtol)
if train:
@ -2064,6 +2089,104 @@ class TestSDPACpuOnly(NNTestCase):
actual = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask)
self.assertEqual(math_ref, actual)
@unittest.skipIf(not PLATFORM_SUPPORTS_FUSED_ATTENTION, "Fused SDPA was not built for this system")
@parametrize("backend", [SDPBackend.EFFICIENT_ATTENTION, SDPBackend.FLASH_ATTENTION])
@parametrize("seq_len", [32, 64, 128])
@parametrize("head_dim", [16, 32])
@parametrize("dtype", [torch.float32, torch.float16])
def test_fully_masked_out_rows(self, backend, device, seq_len, head_dim, dtype):
def attention_inputs(seq_len, head_dim, device, dtype, mask_every_n_rows=4):
query = torch.rand(1, 1, seq_len, head_dim, requires_grad=True, device=device, dtype=dtype)
key = torch.rand(1, 1, seq_len, head_dim, requires_grad=True, device=device, dtype=dtype)
value = torch.rand(1, 1, seq_len, head_dim, requires_grad=True, device=device, dtype=dtype)
# Create a mask with deterministic row masking
mask = torch.ones(1, 1, seq_len, seq_len, dtype=torch.bool, device=device)
# Mask every nth row
mask[0, 0, ::mask_every_n_rows, :] = False
# Create a fixed pattern for element-wise masking
element_mask = torch.zeros(seq_len, seq_len, dtype=torch.bool, device=device)
element_mask[torch.arange(seq_len)[:, None] % 5 == torch.arange(seq_len) % 5] = True
# Combine row masking and element-wise masking
mask = mask & element_mask.unsqueeze(0).unsqueeze(0)
return query, key, value, mask
def compute_output_and_grads(query, key, value, mask, backend):
with sdpa_kernel(backend):
masked_out = scaled_dot_product_attention(query, key, value, attn_mask=mask)
loss = masked_out.sum()
grads = torch.autograd.grad(loss, [query, key, value])
return masked_out, grads
if backend == SDPBackend.FLASH_ATTENTION and "cuda" in str(device):
unittest.skip("FlashAttention does not support masks on cuda")
return
if backend == SDPBackend.EFFICIENT_ATTENTION and "cpu" in str(device):
unittest.skip("EfficientAttention does not support masks on cpu")
return
query, key, value, mask = attention_inputs(seq_len, head_dim, device, dtype)
# Compute results for the tested backend
backend_out, backend_grads = compute_output_and_grads(query, key, value, mask, backend)
# Compute results for the Math backend
math_out, math_grads = compute_output_and_grads(query, key, value, mask, SDPBackend.MATH)
# Compare outputs
torch.testing.assert_close(backend_out, math_out, atol=5e-3, rtol=0)
self.assertFalse(backend_out.isnan().any())
self.assertFalse(math_out.isnan().any())
# Compare gradients
for bg, mg in zip(backend_grads, math_grads):
torch.testing.assert_close(bg, mg, atol=3e-3, rtol=0)
self.assertFalse(bg.isnan().any())
self.assertFalse(mg.isnan().any())
# Check if masked rows are zero in output
mask_sum = mask.sum(dim=-1, keepdim=True)
masked_rows = (mask_sum == 0).expand_as(backend_out)
self.assertTrue((mask_sum == 0).sum() > 0, "No fully masked out rows found")
assert torch.all(backend_out[masked_rows] == 0), \
f"Non-zero values in fully masked rows for {backend=}"
# Check if gradients for masked rows are zero
grad_query = backend_grads[0]
assert torch.all(grad_query[masked_rows] == 0), f"Non-zero gradients in fully masked rows for {backend=}"
@parametrize("dtype", [torch.float32, torch.float16])
@parametrize("fill_val", [float("inf")])
def test_non_masked_rows_nan_props(self, device, dtype, fill_val):
query = torch.randn(1, 2, 4, 16, device=device, dtype=dtype)
# a single NaN in the query input
query[0, 1, 2, 3] = fill_val
query = query.detach().requires_grad_(True)
key = torch.randn(1, 2, 4, 16, device=device, dtype=dtype, requires_grad=True)
value = torch.randn(1, 2, 4, 16, device=device, dtype=dtype, requires_grad=True)
out = torch.nn.functional.scaled_dot_product_attention(query, key, value)
self.assertTrue(torch.isnan(out).any())
out.sum().backward()
self.assertTrue(torch.isnan(query.grad).any())
@parametrize("kernel", [SDPBackend.MATH])
def test_scaled_dot_product_attention_math_with_negative_scale(self, device, kernel: SDPBackend):
# https://github.com/pytorch/pytorch/issues/105190.
def ref(x):
v1 = torch.matmul(x, x.transpose(-1, -2))
v2 = v1 / -0.0001
v3 = v2.softmax(dim=-1)
v4 = torch.matmul(v3, x)
return v4
x = torch.randn(1, 3, 64, 64, device=device)
ref_result = ref(x)
with sdpa_kernel(backends=[kernel]):
sdp_math = torch.nn.functional.scaled_dot_product_attention(x, x, x, scale=-1.0 / 0.0001)
self.assertEqual(ref_result, sdp_math)
class TestSDPACudaOnly(NNTestCase):
""" Used to test CUDA only functionality of scaled_dot_product_attention

View File

@ -2845,6 +2845,7 @@
# Transformer
- name: _safe_softmax(Tensor self, int dim, ScalarType? dtype=None) -> Tensor
self: _softmax_backward_data(grad, result, dim, self.scalar_type())
result: result * (self_t - safe_logsumexp_jvp(self_p, self_t, {dim}, true))
- name: _scaled_dot_product_efficient_attention(Tensor query, Tensor key, Tensor value, Tensor? attn_bias, bool compute_log_sumexp, float dropout_p=0.0, bool is_causal=False, *, float? scale=None) -> (Tensor output, Tensor log_sumexp, Tensor philox_seed, Tensor philox_offset)
output_differentiability: [True, False, False, False]

View File

@ -6715,6 +6715,22 @@ Tensor logsumexp_jvp(
}
}
Tensor safe_logsumexp_jvp(
const Tensor& self_p,
const Tensor& self_t,
IntArrayRef dim,
bool keepdim) {
auto lse_jvp = logsumexp_jvp(self_p, self_t, dim, keepdim);
const auto neg_inf = at::scalar_tensor(
-std::numeric_limits<float>::infinity(),
at::TensorOptions().dtype(lse_jvp.dtype()).device(lse_jvp.device()));
const auto masked = self_p.eq(neg_inf);
const auto masked_rows = all(masked, dim, true);
const auto zero = at::scalar_tensor(
0.0, at::TensorOptions().dtype(lse_jvp.dtype()).device(lse_jvp.device()));
return at::where(masked_rows, zero, lse_jvp);
}
Tensor warn_backwards(const Tensor& grad_output) {
TORCH_WARN("Warn from backward");
return grad_output;

View File

@ -229,6 +229,11 @@ at::Tensor logsumexp_jvp(
const at::Tensor& self_t,
IntArrayRef dim,
bool keepdim);
at::Tensor safe_logsumexp_jvp(
const at::Tensor& self_p,
const at::Tensor& self_t,
IntArrayRef dim,
bool keepdim);
at::Tensor logcumsumexp_backward(
at::Tensor grad,
const at::Tensor& self,

View File

@ -16210,8 +16210,8 @@ op_db: List[OpInfo] = [
sample_inputs_func=sample_inputs_safe_softmax,
assert_jit_shape_analysis=True,
assert_autodiffed=True,
supports_forward_ad=False,
supports_fwgrad_bwgrad=False,
supports_forward_ad=True,
supports_fwgrad_bwgrad=True,
supports_out=False,
supports_cow_input_no_materialize_backward=False,
decorators=[],