qlinear operator level benchmark (#22914)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22914

Adding op level benchmarking for qlinear operator

Reviewed By: mingzhe09088

Differential Revision: D16285204

fbshipit-source-id: 99b734ddfa0af6aada820cac7b2f38ef7a5868cb
This commit is contained in:
Jianyu Huang 2019-07-17 09:09:28 -07:00 committed by Facebook Github Bot
parent 7a99f3987b
commit f72d754877
2 changed files with 63 additions and 1 deletions

View File

@ -9,7 +9,7 @@ import torch
import torch.nn as nn
"""Microbenchmarks for batchnorm operator."""
"""Microbenchmarks for Linear operator."""
configs = op_bench.config_list(
attrs=[

View File

@ -0,0 +1,62 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import operator_benchmark as op_bench
import torch
import torch.nn.quantized as nnq
"""
Microbenchmarks for Quantized Linear operators.
"""
# Configs for qlinear
qlinear_configs = op_bench.config_list(
attrs=[
[1024, 1024, 1024],
[64, 800, 320],
[64, 768, 512],
[16, 256, 512],
[128, 128, 128],
[256, 512, 256],
[6400, 15, 141],
[6400, 8, 141],
[16, 211, 2504],
[16, 369, 1434],
[1, 1024, 3496],
[16, 256, 512],
[1, 1600, 3456],
],
attr_names=["N", "OUT", "IN"], # M, N, K
tags=["short"],
)
class QLinearBenchmark(op_bench.TorchBenchmarkBase):
def init(self, N, IN, OUT):
scale = 1.0 / 255
zero_point = 0
X = torch.randn(N, IN, dtype=torch.float32)
qX = torch.quantize_linear(X, scale=scale, zero_point=zero_point, dtype=torch.quint8)
W = torch.randn(OUT, IN, dtype=torch.float32)
qW = torch.quantize_linear(W, scale=scale, zero_point=0, dtype=torch.qint8)
self.input = qX
self.qlinear = nnq.Linear(IN, OUT)
self.qlinear.weight = qW
self.qlinear.scale = scale
self.qlinear.zero_point = zero_point
self.set_module_name("QLinear")
def forward(self):
return self.qlinear(self.input)
op_bench.generate_pt_test(qlinear_configs, QLinearBenchmark)
if __name__ == "__main__":
op_bench.benchmark_runner.main()