mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
[Intel GPU][pre_compile] Add XPU toolkit version and hardware info in compiled model check. (#162951)
Following #162438, this PR generalized the origin CUDA only check, and add XPU check. Fixes #162939, Fixes #162938, Fixes #163032,Fixes #163045 Pull Request resolved: https://github.com/pytorch/pytorch/pull/162951 Approved by: https://github.com/EikanWang, https://github.com/jansel
This commit is contained in:
parent
26eefd5ae2
commit
e93706c2c8
|
|
@ -12,7 +12,7 @@ from typing import Any, Callable, Optional, TYPE_CHECKING
|
|||
|
||||
import torch
|
||||
import torch.fx
|
||||
from torch._dynamo.graph_utils import _graph_uses_non_cpu
|
||||
from torch._dynamo.graph_utils import _graph_device_type
|
||||
from torch._dynamo.precompile_context import SystemInfo
|
||||
|
||||
from . import convert_frame
|
||||
|
|
@ -59,12 +59,12 @@ class CompileArtifacts:
|
|||
original_code: types.CodeType
|
||||
closure: Optional[tuple[Any, ...]]
|
||||
source_info: "SourceInfo"
|
||||
use_cuda: bool
|
||||
device_type: str
|
||||
system_info: SystemInfo = dataclasses.field(default_factory=SystemInfo.current)
|
||||
|
||||
def check_compatibility(self) -> None:
|
||||
current_system = SystemInfo.current()
|
||||
current_system.check_compatibility(self.system_info, self.use_cuda)
|
||||
current_system.check_compatibility(self.system_info, self.device_type)
|
||||
|
||||
|
||||
@dataclass
|
||||
|
|
@ -266,7 +266,7 @@ def aot_compile_fullgraph(
|
|||
backend_input.graph_module._backend_id = backend_input.backend_id # type: ignore[assignment]
|
||||
output_graph = dynamo_output.tracer_output.output_graph
|
||||
assert output_graph is not None
|
||||
use_cuda = _graph_uses_non_cpu(output_graph.current_tracer.graph)
|
||||
device_type = _graph_device_type(output_graph.current_tracer.graph)
|
||||
import_sources = output_graph.import_sources
|
||||
with (
|
||||
torch._guards.tracing(TracingContext(backend_input.fake_mode)),
|
||||
|
|
@ -310,7 +310,7 @@ def aot_compile_fullgraph(
|
|||
original_code=fn.__code__,
|
||||
closure=fn.__closure__,
|
||||
source_info=source_info,
|
||||
use_cuda=use_cuda,
|
||||
device_type=device_type,
|
||||
)
|
||||
aot_compiled_fn = AOTCompiledFunction(_artifacts=artifacts)
|
||||
|
||||
|
|
|
|||
|
|
@ -1264,7 +1264,7 @@ def _compile(
|
|||
assert check_fn.guards_state is not None
|
||||
package.add_guarded_code(check_fn.guards_state, out_code)
|
||||
package.add_inlined_source(output.tracing_context.traced_code)
|
||||
package.update_use_cuda(output.current_tracer.graph)
|
||||
package.update_device_type(output.current_tracer.graph)
|
||||
|
||||
compile_id_str = str(compile_id) if compile_id is not None else "Unknown"
|
||||
annotation_str = "Torch-Compiled Region: " + compile_id_str
|
||||
|
|
|
|||
|
|
@ -79,16 +79,16 @@ def _detect_cycles(
|
|||
return "no cycle detected"
|
||||
|
||||
|
||||
def _graph_uses_non_cpu(graph: Optional[Graph]) -> bool:
|
||||
def _graph_device_type(graph: Optional[Graph]) -> str:
|
||||
if graph is None:
|
||||
return False
|
||||
return "cpu"
|
||||
|
||||
def _is_non_cpu(x: Any) -> bool:
|
||||
def _device_type(x: Any) -> str:
|
||||
if isinstance(x, torch.device):
|
||||
return x.type != "cpu"
|
||||
return x.type
|
||||
if isinstance(x, torch.Tensor):
|
||||
return x.device.type != "cpu"
|
||||
return False
|
||||
return x.device.type
|
||||
return "cpu"
|
||||
|
||||
def _flatten_meta(node: Node, key: str) -> list[Any]:
|
||||
if key not in node.meta:
|
||||
|
|
@ -99,19 +99,18 @@ def _graph_uses_non_cpu(graph: Optional[Graph]) -> bool:
|
|||
for node in graph.nodes:
|
||||
for key in ("val", "example_value"):
|
||||
for obj in _flatten_meta(node, key):
|
||||
if _is_non_cpu(obj):
|
||||
return True
|
||||
return _device_type(obj)
|
||||
|
||||
# Check for device conversions
|
||||
if node.op == "call_method":
|
||||
if node.target == "cuda":
|
||||
return True
|
||||
if node.target == "to" and "cuda" in node.args:
|
||||
return True
|
||||
for gpu in ["cuda", "xpu"]:
|
||||
if node.target == gpu:
|
||||
return gpu
|
||||
if node.target == "to" and gpu in node.args:
|
||||
return gpu
|
||||
|
||||
# Check args/kwargs for non-CPU device specs
|
||||
flat_args, _ = tree_flatten((node.args, node.kwargs))
|
||||
for obj in flat_args:
|
||||
if _is_non_cpu(obj):
|
||||
return True
|
||||
return False
|
||||
return _device_type(obj)
|
||||
return "cpu"
|
||||
|
|
|
|||
|
|
@ -29,7 +29,7 @@ from typing_extensions import Never
|
|||
import torch
|
||||
import torch._inductor.package
|
||||
from torch._dynamo.exc import PackageError
|
||||
from torch._dynamo.graph_utils import _graph_uses_non_cpu
|
||||
from torch._dynamo.graph_utils import _graph_device_type
|
||||
from torch._dynamo.precompile_context import (
|
||||
PrecompileCacheArtifact,
|
||||
PrecompileContext,
|
||||
|
|
@ -308,7 +308,7 @@ def _get_code_source(code: types.CodeType) -> tuple[str, str]:
|
|||
class _DynamoCacheEntry:
|
||||
codes: list[_DynamoCodeCacheEntry]
|
||||
source_info: SourceInfo
|
||||
use_cuda: bool
|
||||
device_type: str
|
||||
system_info: SystemInfo = dataclasses.field(default_factory=SystemInfo.current)
|
||||
|
||||
@property
|
||||
|
|
@ -318,7 +318,7 @@ class _DynamoCacheEntry:
|
|||
def check_versions(self) -> None:
|
||||
"""Check if the current system is compatible with the system used to create this cache entry."""
|
||||
current_system_info = SystemInfo.current()
|
||||
self.system_info.check_compatibility(current_system_info, self.use_cuda)
|
||||
self.system_info.check_compatibility(current_system_info, self.device_type)
|
||||
|
||||
|
||||
@CacheArtifactFactory.register
|
||||
|
|
@ -407,8 +407,8 @@ class CompilePackage:
|
|||
|
||||
self._current_entry: Optional[_DynamoCodeCacheEntry] = None
|
||||
self._installed_globals: dict[types.ModuleType, list[str]] = {}
|
||||
# whether cuda is used
|
||||
self._use_cuda = False
|
||||
# device_type that model compiled with.
|
||||
self._device_type = "cpu"
|
||||
|
||||
# For debugging/testing purpose only.
|
||||
self._cached_backends: dict[_BackendId, Any] = {}
|
||||
|
|
@ -553,8 +553,8 @@ class CompilePackage:
|
|||
continue
|
||||
self._source_info.add_code(code)
|
||||
|
||||
def update_use_cuda(self, graph: Optional[torch.fx.Graph]) -> None:
|
||||
self._use_cuda = _graph_uses_non_cpu(graph)
|
||||
def update_device_type(self, graph: Optional[torch.fx.Graph]) -> None:
|
||||
self._device_type = _graph_device_type(graph)
|
||||
|
||||
def bypass_current_entry(self) -> None:
|
||||
assert self._current_entry is not None
|
||||
|
|
@ -694,7 +694,7 @@ class CompilePackage:
|
|||
return _DynamoCacheEntry(
|
||||
codes=list(self._codes.values()),
|
||||
source_info=self._source_info,
|
||||
use_cuda=self._use_cuda,
|
||||
device_type=self._device_type,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
|
|
|
|||
|
|
@ -259,31 +259,36 @@ class SystemInfo:
|
|||
|
||||
python_version: str
|
||||
torch_version: str
|
||||
cuda_version: Optional[str]
|
||||
toolkit_version: Optional[str]
|
||||
triton_version: Optional[tuple[int, int]]
|
||||
gpu_name: Optional[str]
|
||||
CHECK_GPUS = ("cuda", "xpu")
|
||||
|
||||
@classmethod
|
||||
def current(cls) -> "SystemInfo":
|
||||
"""Create a SystemInfo instance with current system information."""
|
||||
# Get GPU name if CUDA is available
|
||||
gpu_name = None
|
||||
if torch.cuda.is_available():
|
||||
try:
|
||||
gpu_name = torch.cuda.get_device_name()
|
||||
except Exception:
|
||||
# If we can't get GPU info, leave as None
|
||||
pass
|
||||
# Get GPU name if CUDA or XPU is available
|
||||
gpu_name, toolkit_version = None, None
|
||||
for device_type in cls.CHECK_GPUS:
|
||||
if getattr(torch, device_type).is_available():
|
||||
try:
|
||||
gpu_name = getattr(torch, device_type).get_device_name()
|
||||
toolkit_version = getattr(torch.version, device_type)
|
||||
break
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return cls(
|
||||
python_version=platform.python_version(),
|
||||
torch_version=torch.__version__,
|
||||
cuda_version=torch.version.cuda,
|
||||
toolkit_version=toolkit_version,
|
||||
triton_version=get_triton_version((0, 0)),
|
||||
gpu_name=gpu_name,
|
||||
)
|
||||
|
||||
def check_compatibility(self, other: "SystemInfo", use_cuda: bool = False) -> None:
|
||||
def check_compatibility(
|
||||
self, other: "SystemInfo", device_type: str = "cpu"
|
||||
) -> None:
|
||||
"""
|
||||
Check if this SystemInfo is compatible with another SystemInfo.
|
||||
Raises RuntimeError if incompatible.
|
||||
|
|
@ -297,13 +302,13 @@ class SystemInfo:
|
|||
raise RuntimeError(
|
||||
f"Compile package was created with a different PyTorch version: {self.torch_version}"
|
||||
)
|
||||
if device_type in self.CHECK_GPUS:
|
||||
if not getattr(torch, device_type).is_available():
|
||||
raise RuntimeError(f"{device_type} is not available")
|
||||
|
||||
if use_cuda:
|
||||
if not torch.cuda.is_available():
|
||||
raise RuntimeError("CUDA is not available")
|
||||
if self.cuda_version != other.cuda_version:
|
||||
if self.toolkit_version != other.toolkit_version:
|
||||
raise RuntimeError(
|
||||
f"Compile package was created with a different CUDA version: {self.cuda_version}"
|
||||
f"Compile package was created with a different toolkit version: {self.toolkit_version}"
|
||||
)
|
||||
|
||||
if (
|
||||
|
|
@ -314,7 +319,7 @@ class SystemInfo:
|
|||
f"Compile package was created with a different Triton version: {self.triton_version}"
|
||||
)
|
||||
|
||||
# Check GPU name if CUDA was used
|
||||
# Check GPU name if CUDA/XPU was used
|
||||
if other.gpu_name is not None and self.gpu_name != other.gpu_name:
|
||||
raise RuntimeError(
|
||||
f"Compile package was created with different GPU: "
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user