mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
[Refactor] Explicilty spell out the namespace for device() function (#153248)
Summary: To prepare for the coming up header-only file change. The same files have been using a mixed style of using at::device() and device(). Given these .cpp files are not in the at namespace, it makes sense to spell them out explicitly. Differential Revision: [D74577412](https://our.internmc.facebook.com/intern/diff/D74577412) Pull Request resolved: https://github.com/pytorch/pytorch/pull/153248 Approved by: https://github.com/cyyever, https://github.com/albanD, https://github.com/janeyx99
This commit is contained in:
parent
0ef5ba43a6
commit
e8f7a97e2e
|
|
@ -106,7 +106,7 @@ c10::intrusive_ptr<LinearPackedParamsBase> PackedLinearWeight::deserialize(
|
|||
std::get<weight_scales_index>(serialized),
|
||||
weight_zero_points,
|
||||
0, // The output channel axis is 0
|
||||
device(c10::kCPU).dtype(c10::kQInt8));
|
||||
at::device(c10::kCPU).dtype(c10::kQInt8));
|
||||
}
|
||||
|
||||
const at::Tensor loaded_weight_values =
|
||||
|
|
|
|||
|
|
@ -46,7 +46,7 @@ LinearPackedSerializationType PackedLinearWeight::unpack() {
|
|||
scales,
|
||||
zero_points,
|
||||
0, // The output channel axis is 0
|
||||
device(c10::kCPU).dtype(c10::kQInt8));
|
||||
at::device(c10::kCPU).dtype(c10::kQInt8));
|
||||
}
|
||||
|
||||
int8_t* weight_ptr_int8 =
|
||||
|
|
@ -100,7 +100,7 @@ LinearPackedSerializationType PackedLinearWeightQnnp::unpack() {
|
|||
scales,
|
||||
zero_points,
|
||||
0, // The output channel axis is 0
|
||||
device(c10::kCPU).dtype(c10::kQInt8));
|
||||
at::device(c10::kCPU).dtype(c10::kQInt8));
|
||||
}
|
||||
|
||||
int8_t* weight_ptr_int8 =
|
||||
|
|
|
|||
|
|
@ -32,16 +32,16 @@ std::tuple<at::Tensor, std::optional<at::Tensor>> PackedLinearWeight::unpack() {
|
|||
{N, K}, at::device(c10::kCPU).dtype(c10::kQInt8), w_scale[0], w_zp[0]);
|
||||
} else if (q_scheme == c10::kPerChannelAffine) {
|
||||
auto scales = at::from_blob(
|
||||
w_scale.data(), w_scale.size(), device(c10::kCPU).dtype(c10::kFloat));
|
||||
w_scale.data(), w_scale.size(), at::device(c10::kCPU).dtype(c10::kFloat));
|
||||
auto zero_points = at::from_blob(
|
||||
w_zp.data(), w_zp.size(), device(c10::kCPU).dtype(c10::kInt));
|
||||
w_zp.data(), w_zp.size(), at::device(c10::kCPU).dtype(c10::kInt));
|
||||
|
||||
weight_origin = at::_empty_per_channel_affine_quantized(
|
||||
{N, K},
|
||||
scales.toType(c10::kDouble),
|
||||
zero_points.toType(c10::kLong),
|
||||
0, // The output channel axis is 0
|
||||
device(c10::kCPU).dtype(c10::kQInt8));
|
||||
at::device(c10::kCPU).dtype(c10::kQInt8));
|
||||
}
|
||||
|
||||
int8_t* weight_ptr_int8 =
|
||||
|
|
@ -81,7 +81,7 @@ std::tuple<at::Tensor, std::optional<at::Tensor>> PackedLinearWeightsQnnp::
|
|||
auto scales = at::from_blob(
|
||||
weight_scales_data,
|
||||
w_scales.sizes()[0] - kPaddingChannels,
|
||||
device(c10::kCPU).dtype(c10::kFloat));
|
||||
at::device(c10::kCPU).dtype(c10::kFloat));
|
||||
|
||||
at::Tensor zero_points = at::empty(
|
||||
w_zero_points.size() - kPaddingChannels, at::device(c10::kCPU).dtype(c10::kLong));
|
||||
|
|
@ -93,7 +93,7 @@ std::tuple<at::Tensor, std::optional<at::Tensor>> PackedLinearWeightsQnnp::
|
|||
scales,
|
||||
zero_points.toType(c10::kLong),
|
||||
0, // The output channel axis is 0
|
||||
device(c10::kCPU).dtype(c10::kQInt8))
|
||||
at::device(c10::kCPU).dtype(c10::kQInt8))
|
||||
.contiguous();
|
||||
} else {
|
||||
TORCH_INTERNAL_ASSERT(false, "Unsupported quantization scheme.");
|
||||
|
|
|
|||
|
|
@ -448,7 +448,7 @@ at::Tensor PackedConvWeight<kSpatialDim>::apply_impl(
|
|||
at::Tensor output = kSpatialDim == 2
|
||||
? at::_empty_affine_quantized(
|
||||
output_shape,
|
||||
device(c10::kCPU)
|
||||
at::device(c10::kCPU)
|
||||
.dtype(c10::kQUInt8)
|
||||
.memory_format(c10::MemoryFormat::ChannelsLast),
|
||||
output_scale,
|
||||
|
|
@ -460,7 +460,7 @@ at::Tensor PackedConvWeight<kSpatialDim>::apply_impl(
|
|||
output_shape[2],
|
||||
output_shape[3],
|
||||
output_shape[4],
|
||||
device(c10::kCPU).dtype(c10::kQUInt8),
|
||||
at::device(c10::kCPU).dtype(c10::kQUInt8),
|
||||
output_scale,
|
||||
output_zero_point);
|
||||
at::Tensor buffer =
|
||||
|
|
@ -1225,7 +1225,7 @@ at::Tensor PackedConvWeightsOnednn<kSpatialDim>::apply_impl(
|
|||
ideep::dims dst_dims = ideep::dims({output_sizes.cbegin(), output_sizes.cend()});
|
||||
at::Tensor output = at::_empty_affine_quantized(
|
||||
dst_dims,
|
||||
device(c10::kCPU)
|
||||
at::device(c10::kCPU)
|
||||
.dtype(c10::kQUInt8)
|
||||
.memory_format(kSpatialDim == 2 ?
|
||||
c10::MemoryFormat::ChannelsLast :
|
||||
|
|
@ -1593,7 +1593,7 @@ static at::Tensor _quantized_convolution_onednn(
|
|||
accum.value() :
|
||||
at::empty(
|
||||
dst_dims,
|
||||
device(c10::kCPU)
|
||||
at::device(c10::kCPU)
|
||||
.dtype(fp32_output ? c10::kFloat : (bfloat16_output ? c10::kBFloat16 : c10::kByte))
|
||||
.memory_format(kSpatialDim == 2 ?
|
||||
c10::MemoryFormat::ChannelsLast :
|
||||
|
|
|
|||
|
|
@ -37,7 +37,7 @@ std::tuple<at::Tensor, std::optional<at::Tensor>> PackedConvWeight<
|
|||
unpacked_weights = kSpatialDim == 2
|
||||
? at::_empty_affine_quantized(
|
||||
{output_channels, C_per_G, kernel_h, kernel_w},
|
||||
device(c10::kCPU)
|
||||
at::device(c10::kCPU)
|
||||
.dtype(c10::kQInt8)
|
||||
.memory_format(c10::MemoryFormat::ChannelsLast),
|
||||
w_scale[0],
|
||||
|
|
@ -50,7 +50,7 @@ std::tuple<at::Tensor, std::optional<at::Tensor>> PackedConvWeight<
|
|||
kernel_d,
|
||||
kernel_h,
|
||||
kernel_w,
|
||||
device(c10::kCPU).dtype(c10::kQInt8),
|
||||
at::device(c10::kCPU).dtype(c10::kQInt8),
|
||||
w_scale[0],
|
||||
w_zp[0]);
|
||||
} else if (q_scheme == c10::kPerChannelAffine) {
|
||||
|
|
@ -58,16 +58,16 @@ std::tuple<at::Tensor, std::optional<at::Tensor>> PackedConvWeight<
|
|||
!transpose(),
|
||||
"Per Channel Quantization is currently disabled for transposed conv");
|
||||
auto scales = at::from_blob(
|
||||
w_scale.data(), w_scale.size(), device(c10::kCPU).dtype(c10::kFloat));
|
||||
w_scale.data(), w_scale.size(), at::device(c10::kCPU).dtype(c10::kFloat));
|
||||
auto zero_points = at::from_blob(
|
||||
w_zp.data(), w_zp.size(), device(c10::kCPU).dtype(c10::kInt));
|
||||
w_zp.data(), w_zp.size(), at::device(c10::kCPU).dtype(c10::kInt));
|
||||
unpacked_weights = kSpatialDim == 2
|
||||
? at::_empty_per_channel_affine_quantized(
|
||||
{output_channels, C_per_G, kernel_h, kernel_w},
|
||||
scales.toType(c10::kDouble),
|
||||
zero_points.toType(c10::kLong),
|
||||
0, /* The output channel axis is 0 */
|
||||
device(c10::kCPU).dtype(c10::kQInt8),
|
||||
at::device(c10::kCPU).dtype(c10::kQInt8),
|
||||
c10::MemoryFormat::ChannelsLast)
|
||||
: at::native::fbgemm_utils::
|
||||
MakeEmptyPerChannelAffineQuantizedChannelsLast3dTensor(
|
||||
|
|
@ -76,7 +76,7 @@ std::tuple<at::Tensor, std::optional<at::Tensor>> PackedConvWeight<
|
|||
kernel_d,
|
||||
kernel_h,
|
||||
kernel_w,
|
||||
device(c10::kCPU).dtype(c10::kQInt8),
|
||||
at::device(c10::kCPU).dtype(c10::kQInt8),
|
||||
scales.toType(c10::kDouble),
|
||||
zero_points.toType(c10::kLong));
|
||||
} else {
|
||||
|
|
|
|||
|
|
@ -44,9 +44,9 @@ at::Tensor PackedEmbeddingBagWeight::unpack() {
|
|||
num_elem_per_byte};
|
||||
|
||||
auto scales = at::from_blob(
|
||||
w_scale.data(), w_scale.size(), device(c10::kCPU).dtype(c10::kFloat));
|
||||
w_scale.data(), w_scale.size(), at::device(c10::kCPU).dtype(c10::kFloat));
|
||||
auto zero_points = at::from_blob(
|
||||
w_zp.data(), w_zp.size(), device(c10::kCPU).dtype(c10::kFloat));
|
||||
w_zp.data(), w_zp.size(), at::device(c10::kCPU).dtype(c10::kFloat));
|
||||
|
||||
auto output_columns = output_shape[1];
|
||||
uint8_t* output_data = nullptr;
|
||||
|
|
@ -58,7 +58,7 @@ at::Tensor PackedEmbeddingBagWeight::unpack() {
|
|||
scales.toType(c10::kFloat),
|
||||
zero_points.toType(c10::kFloat),
|
||||
0, // The output channel axis is 0
|
||||
device(c10::kCPU).dtype(c10::kQUInt8));
|
||||
at::device(c10::kCPU).dtype(c10::kQUInt8));
|
||||
output_data = static_cast<uint8_t*>(weight_origin.data_ptr());
|
||||
} else {
|
||||
// We create empty qtensor with the full output shape, and dtype set to
|
||||
|
|
@ -69,7 +69,7 @@ at::Tensor PackedEmbeddingBagWeight::unpack() {
|
|||
scales.toType(c10::kFloat),
|
||||
zero_points.toType(c10::kFloat),
|
||||
0, // The output channel axis is 0
|
||||
device(c10::kCPU).dtype(c10::kQUInt4x2));
|
||||
at::device(c10::kCPU).dtype(c10::kQUInt4x2));
|
||||
output_data = static_cast<uint8_t*>(weight_origin.data_ptr());
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -1015,7 +1015,7 @@ static at::Tensor linear_int8_with_onednn_weight(
|
|||
other.value() :
|
||||
at::empty(
|
||||
dst_dims,
|
||||
device(c10::kCPU)
|
||||
at::device(c10::kCPU)
|
||||
.dtype(fp32_output ? c10::kFloat : (bf16_output ? c10::kBFloat16 : c10::kByte))
|
||||
);
|
||||
if (output.numel() == 0) {
|
||||
|
|
|
|||
|
|
@ -652,7 +652,7 @@ static at::Tensor linear_dynamic_fp16_with_onednn_weight(
|
|||
std::vector<int64_t> dst_dims = {M, N};
|
||||
at::Tensor output = at::empty(
|
||||
dst_dims,
|
||||
device(c10::kCPU)
|
||||
at::device(c10::kCPU)
|
||||
.dtype(c10::kFloat)
|
||||
);
|
||||
if (output.numel() == 0) {
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user