mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Revert "[inductor][test] Skip triton tests for MPS as well, also change reason for skipping SM89 to not IS_BIG_GPU (#151506)"
This reverts commit 6246c7d62c.
Reverted https://github.com/pytorch/pytorch/pull/151506 on behalf of https://github.com/henrylhtsang due to seems to be breaking some rocm mi300 run ([comment](https://github.com/pytorch/pytorch/pull/151506#issuecomment-2815999009))
This commit is contained in:
parent
cccfc146fe
commit
e434a9152e
|
|
@ -27,7 +27,11 @@ from torch.ao.quantization.quantizer.x86_inductor_quantizer import X86InductorQu
|
|||
from torch.export import Dim, export, export_for_training
|
||||
from torch.testing import FileCheck
|
||||
from torch.testing._internal import common_utils
|
||||
from torch.testing._internal.common_cuda import PLATFORM_SUPPORTS_FP8, SM80OrLater
|
||||
from torch.testing._internal.common_cuda import (
|
||||
IS_SM89,
|
||||
PLATFORM_SUPPORTS_FP8,
|
||||
SM80OrLater,
|
||||
)
|
||||
from torch.testing._internal.common_device_type import (
|
||||
_has_sufficient_memory,
|
||||
skipCUDAIf,
|
||||
|
|
@ -49,7 +53,7 @@ from torch.testing._internal.common_utils import (
|
|||
TEST_WITH_ROCM,
|
||||
)
|
||||
from torch.testing._internal.custom_tensor import CustomTensorPlainOut
|
||||
from torch.testing._internal.inductor_utils import GPU_TYPE, IS_BIG_GPU
|
||||
from torch.testing._internal.inductor_utils import GPU_TYPE
|
||||
from torch.testing._internal.logging_utils import LoggingTestCase, make_logging_test
|
||||
from torch.testing._internal.triton_utils import HAS_GPU, requires_gpu
|
||||
from torch.utils import _pytree as pytree
|
||||
|
|
@ -509,9 +513,6 @@ class AOTInductorTestsTemplate:
|
|||
model = LinearModel(device=self.device)
|
||||
self.check_model(model, example_inputs)
|
||||
|
||||
@unittest.skipIf(
|
||||
not IS_BIG_GPU, "Skipping triton backend only since not big GPU (not enough SM)"
|
||||
)
|
||||
def test_linear_dynamic_maxautotune(self):
|
||||
if self.device == "cpu":
|
||||
raise unittest.SkipTest("using triton backend only is not supported on CPU")
|
||||
|
|
@ -630,9 +631,6 @@ class AOTInductorTestsTemplate:
|
|||
actual = AOTIRunnerUtil.legacy_run(self.device, model, example_inputs)
|
||||
self.assertTrue(same(model(*example_inputs), actual))
|
||||
|
||||
@unittest.skipIf(
|
||||
not IS_BIG_GPU, "Skipping triton backend only since not big GPU (not enough SM)"
|
||||
)
|
||||
@skip("Test was marked as expected failure, but does not fail always anymore.")
|
||||
def test_dynamic_smem_above_default_limit(self):
|
||||
if self.device == "cpu":
|
||||
|
|
@ -958,7 +956,8 @@ class AOTInductorTestsTemplate:
|
|||
)
|
||||
|
||||
@unittest.skipIf(
|
||||
not IS_BIG_GPU, "Skipping triton backend only since not big GPU (not enough SM)"
|
||||
IS_SM89,
|
||||
"Triton not supported as Inductor GEMM backend on SM89, see https://github.com/pytorch/pytorch/issues/150390",
|
||||
)
|
||||
def test_addmm_multiple_dynamic(self):
|
||||
if self.device == "cpu":
|
||||
|
|
@ -1001,7 +1000,8 @@ class AOTInductorTestsTemplate:
|
|||
)
|
||||
|
||||
@unittest.skipIf(
|
||||
not IS_BIG_GPU, "Skipping triton backend only since not big GPU (not enough SM)"
|
||||
IS_SM89,
|
||||
"Triton not supported as Inductor GEMM backend on SM89, see https://github.com/pytorch/pytorch/issues/150390",
|
||||
)
|
||||
def test_bmm_multiple_dynamic(self):
|
||||
if self.device == "cpu":
|
||||
|
|
@ -3128,9 +3128,6 @@ class AOTInductorTestsTemplate:
|
|||
inputs = (torch.randn(4, 4, device=self.device),)
|
||||
self.check_model(Model(), inputs)
|
||||
|
||||
@unittest.skipIf(
|
||||
not IS_BIG_GPU, "Skipping triton backend only since not big GPU (not enough SM)"
|
||||
)
|
||||
def test_convolution(self):
|
||||
if self.device == "cpu":
|
||||
raise unittest.SkipTest("using triton backend only is not supported on CPU")
|
||||
|
|
|
|||
|
|
@ -10,12 +10,7 @@ from torch._inductor.test_operators import realize
|
|||
from torch._inductor.utils import fresh_inductor_cache, is_big_gpu, run_and_get_code
|
||||
from torch.testing import FileCheck
|
||||
from torch.testing._internal.common_utils import slowTest
|
||||
from torch.testing._internal.inductor_utils import (
|
||||
get_func_call,
|
||||
HAS_CPU,
|
||||
HAS_CUDA,
|
||||
IS_BIG_GPU,
|
||||
)
|
||||
from torch.testing._internal.inductor_utils import get_func_call, HAS_CPU, HAS_CUDA
|
||||
|
||||
|
||||
# Make the helper files in test/ importable
|
||||
|
|
@ -33,6 +28,7 @@ from inductor.test_torchinductor import ( # @manual=fbcode//caffe2/test/inducto
|
|||
)
|
||||
from torch._inductor import config
|
||||
from torch._inductor.scheduler import Scheduler
|
||||
from torch.testing._internal.common_cuda import IS_SM89
|
||||
|
||||
|
||||
class TestCase(InductorTestCase):
|
||||
|
|
@ -133,7 +129,8 @@ class BenchmarkFusionTestTemplate:
|
|||
self.common(f, (a, b))
|
||||
|
||||
@unittest.skipIf(
|
||||
not IS_BIG_GPU, "Skipping triton backend only since not big GPU (not enough SM)"
|
||||
IS_SM89,
|
||||
"Triton not supported as Inductor GEMM backend on SM89, see https://github.com/pytorch/pytorch/issues/150390",
|
||||
)
|
||||
@config.patch(max_autotune_gemm_backends="TRITON")
|
||||
def test_avoid_register_spilling(self):
|
||||
|
|
|
|||
|
|
@ -41,7 +41,6 @@ from torch.testing._internal.common_utils import (
|
|||
TEST_WITH_ROCM,
|
||||
xfailIfPy312Plus,
|
||||
)
|
||||
from torch.testing._internal.inductor_utils import IS_BIG_GPU
|
||||
|
||||
|
||||
if TEST_WITH_ROCM:
|
||||
|
|
@ -1134,9 +1133,6 @@ class CudaReproTests(TestCase):
|
|||
|
||||
self.assertEqual(expect, actual)
|
||||
|
||||
@unittest.skipIf(
|
||||
not IS_BIG_GPU, "Skipping triton backend only since not big GPU (not enough SM)"
|
||||
)
|
||||
@config.patch(
|
||||
{
|
||||
"max_autotune_gemm_backends": "TRITON",
|
||||
|
|
|
|||
|
|
@ -4,7 +4,6 @@ import contextlib
|
|||
import os
|
||||
import subprocess
|
||||
import sys
|
||||
import unittest
|
||||
from unittest.mock import patch
|
||||
|
||||
import torch
|
||||
|
|
@ -16,7 +15,7 @@ from torch._inductor.test_case import run_tests, TestCase
|
|||
from torch._inductor.utils import fresh_inductor_cache
|
||||
from torch.testing import FileCheck
|
||||
from torch.testing._internal.common_cuda import xfailIfSM89
|
||||
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU, IS_BIG_GPU
|
||||
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
|
||||
|
||||
|
||||
class TestKernelBenchmark(TestCase):
|
||||
|
|
@ -149,9 +148,6 @@ class TestKernelBenchmark(TestCase):
|
|||
@config.patch(
|
||||
max_autotune=True, max_autotune_gemm_backends="TRITON", force_shape_pad=True
|
||||
)
|
||||
@unittest.skipIf(
|
||||
not IS_BIG_GPU, "Skipping triton backend only since not big GPU (not enough SM)"
|
||||
)
|
||||
@fresh_inductor_cache()
|
||||
def test_matmul_triton_kernel_benchmark(self):
|
||||
M = 12544
|
||||
|
|
@ -467,9 +463,6 @@ class TestKernelBenchmark(TestCase):
|
|||
compiled_module = self.get_compiled_module()
|
||||
self.verify_remove_inductor_deps(compiled_module)
|
||||
|
||||
@unittest.skipIf(
|
||||
not IS_BIG_GPU, "Skipping triton backend only since not big GPU (not enough SM)"
|
||||
)
|
||||
@config.patch("triton.unique_kernel_names", True)
|
||||
@config.patch("triton.unique_kernel_names", True)
|
||||
@config.patch(benchmark_kernel=False)
|
||||
|
|
|
|||
|
|
@ -121,6 +121,7 @@ from torch._inductor.compile_fx import (
|
|||
complex_memory_overlap,
|
||||
)
|
||||
from torch._inductor.utils import has_torchvision_roi_align
|
||||
from torch.testing._internal.common_cuda import IS_SM89
|
||||
from torch.testing._internal.common_utils import slowTest
|
||||
from torch.testing._internal.inductor_utils import (
|
||||
clone_preserve_strides_offset,
|
||||
|
|
@ -129,7 +130,6 @@ from torch.testing._internal.inductor_utils import (
|
|||
HAS_GPU,
|
||||
HAS_MPS,
|
||||
HAS_MULTIGPU,
|
||||
IS_BIG_GPU,
|
||||
requires_gpu,
|
||||
RUN_CPU,
|
||||
RUN_GPU,
|
||||
|
|
@ -3839,7 +3839,8 @@ class CommonTemplate:
|
|||
torch.compile(fn)(t)
|
||||
|
||||
@unittest.skipIf(
|
||||
not IS_BIG_GPU, "Skipping triton backend only since not big GPU (not enough SM)"
|
||||
IS_SM89,
|
||||
"Triton not supported as Inductor GEMM backend on SM89, see https://github.com/pytorch/pytorch/issues/150390",
|
||||
)
|
||||
@config.patch(
|
||||
{
|
||||
|
|
@ -3848,6 +3849,9 @@ class CommonTemplate:
|
|||
}
|
||||
)
|
||||
def test_linear_dynamic_maxautotune(self):
|
||||
if self.device == "cpu":
|
||||
raise unittest.SkipTest("using triton backend only is not supported on CPU")
|
||||
|
||||
@torch.compile(dynamic=True)
|
||||
class Model(torch.nn.Module):
|
||||
def __init__(self) -> None:
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user