mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 00:20:18 +01:00
[5/N] Remove unused loop variables in tests (#166716)
This PR removes unused loop variables in tests. Pull Request resolved: https://github.com/pytorch/pytorch/pull/166716 Approved by: https://github.com/Lucaskabela, https://github.com/Skylion007
This commit is contained in:
parent
e4043884c7
commit
d97144d31e
|
|
@ -266,7 +266,7 @@ class TestFullyShardPostAccGradHookMultiThread(FSDPTestMultiThread):
|
|||
model(inp).sum().backward()
|
||||
param_names = {param_name for param_name, _ in model.named_parameters()}
|
||||
self.assertEqual(param_names, set(param_name_to_hook_count.keys()))
|
||||
for param_name, count in param_name_to_hook_count.items():
|
||||
for count in param_name_to_hook_count.values():
|
||||
self.assertEqual(count, 1)
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -195,7 +195,7 @@ if not TEST_WITH_DEV_DBG_ASAN:
|
|||
for i, t in enumerate(tensors):
|
||||
self.assertEqual(t, torch.ones(5, 5, device=device) + i)
|
||||
elif self.rank == 0:
|
||||
for i, t in enumerate(tensors):
|
||||
for t in tensors:
|
||||
zeros = torch.zeros(5, 5, device=device)
|
||||
self.assertEqual(t, zeros)
|
||||
y = torch.sum(torch.stack(tensors), axis=0)
|
||||
|
|
|
|||
|
|
@ -11795,7 +11795,7 @@ class TestONNXRuntime(onnx_test_common._TestONNXRuntime):
|
|||
elem = torch.matmul(x[0], y)
|
||||
for i in range(x.size(0)):
|
||||
res.append(torch.matmul(x[i], y))
|
||||
for i in range(x.size(0)):
|
||||
for _ in range(x.size(0)):
|
||||
elem = res.pop()
|
||||
for i in range(x.size(0)):
|
||||
res.append(torch.matmul(x[i], y))
|
||||
|
|
@ -11815,7 +11815,7 @@ class TestONNXRuntime(onnx_test_common._TestONNXRuntime):
|
|||
elem = torch.matmul(x[0], y)
|
||||
for i in range(x.size(0)):
|
||||
res.append(torch.matmul(x[i], y))
|
||||
for i in range(x.size(0)):
|
||||
for _ in range(x.size(0)):
|
||||
del res[0]
|
||||
for i in range(x.size(0)):
|
||||
res.append(torch.matmul(x[i], y))
|
||||
|
|
|
|||
|
|
@ -109,7 +109,7 @@ class TestProfilerCUDA(TestCase):
|
|||
t = torch.rand(1, 1).cuda()
|
||||
p = psutil.Process()
|
||||
last_rss = collections.deque(maxlen=5)
|
||||
for outer_idx in range(10):
|
||||
for _ in range(10):
|
||||
with _profile(use_cuda=True):
|
||||
for _ in range(1024):
|
||||
t = torch.mm(t, t)
|
||||
|
|
@ -1054,7 +1054,7 @@ class TestProfiler(TestCase):
|
|||
schedule=torch.profiler.schedule(wait=1, warmup=1, active=2),
|
||||
on_trace_ready=trace_handler,
|
||||
) as p:
|
||||
for idx in range(8):
|
||||
for _ in range(8):
|
||||
self.payload(use_cuda=use_cuda)
|
||||
p.step()
|
||||
|
||||
|
|
@ -1144,14 +1144,14 @@ class TestProfiler(TestCase):
|
|||
# See https://github.com/pytorch/pytorch/issues/88446
|
||||
optimizer_step()
|
||||
|
||||
for idx in range(niters):
|
||||
for _ in range(niters):
|
||||
run_batch()
|
||||
|
||||
with profile(
|
||||
activities=supported_activities(),
|
||||
schedule=torch.profiler.schedule(wait=1, warmup=1, active=2),
|
||||
) as p:
|
||||
for idx in range(niters):
|
||||
for _ in range(niters):
|
||||
run_batch()
|
||||
p.step()
|
||||
|
||||
|
|
@ -1508,7 +1508,7 @@ class TestProfiler(TestCase):
|
|||
)
|
||||
inputs = torch.randn(40, 16, 18, 260)
|
||||
uint32_max = 2**32 - 1
|
||||
for i in range(5):
|
||||
for _ in range(5):
|
||||
with profile() as prof:
|
||||
model(inputs)
|
||||
for event in prof.profiler.kineto_results.events():
|
||||
|
|
@ -2023,7 +2023,7 @@ assert KinetoStepTracker.current_step() == initial_step + 2 * niters
|
|||
WAIT_TIME = 10
|
||||
with profile() as p:
|
||||
with torch.profiler.record_function("test_span"):
|
||||
for i in range(WAIT_TIME):
|
||||
for _ in range(WAIT_TIME):
|
||||
torch.rand(4, 4)
|
||||
time.sleep(1)
|
||||
events = p.events()
|
||||
|
|
@ -2072,7 +2072,7 @@ assert KinetoStepTracker.current_step() == initial_step + 2 * niters
|
|||
),
|
||||
acc_events=acc_events,
|
||||
) as prof:
|
||||
for i in range(100):
|
||||
for _ in range(100):
|
||||
torch.add(1, 2)
|
||||
prof.step()
|
||||
# print(prof.key_averages())
|
||||
|
|
@ -3161,7 +3161,7 @@ aten::mm""",
|
|||
r.seed(1)
|
||||
text_sections = get_text_sections()
|
||||
addrs = []
|
||||
for i in range(200):
|
||||
for _ in range(200):
|
||||
s = r.randrange(0, len(text_sections))
|
||||
start, size = text_sections[s]
|
||||
addr = r.randrange(start, start + size)
|
||||
|
|
|
|||
|
|
@ -154,7 +154,7 @@ class TestNumericSuiteEager(QuantizationTestCase):
|
|||
for v in weight_dict.values():
|
||||
self.assertTrue(len(v["float"]) == len(v["quantized"]))
|
||||
for i, val in enumerate(v["quantized"]):
|
||||
self.assertTrue(v["float"][i].shape == v["quantized"][i].shape)
|
||||
self.assertTrue(v["float"][i].shape == val.shape)
|
||||
|
||||
model_list = [SingleLayerLinearDynamicModel(qengine)]
|
||||
for model in model_list:
|
||||
|
|
@ -178,7 +178,7 @@ class TestNumericSuiteEager(QuantizationTestCase):
|
|||
for v in weight_dict.values():
|
||||
self.assertTrue(len(v["float"]) == len(v["quantized"]))
|
||||
for i, val in enumerate(v["quantized"]):
|
||||
self.assertTrue(v["float"][i].shape == v["quantized"][i].shape)
|
||||
self.assertTrue(v["float"][i].shape == val.shape)
|
||||
|
||||
model_list = [LSTMwithHiddenDynamicModel(qengine)]
|
||||
for model in model_list:
|
||||
|
|
@ -200,7 +200,7 @@ class TestNumericSuiteEager(QuantizationTestCase):
|
|||
for v in ob_dict.values():
|
||||
self.assertTrue(len(v["float"]) == len(v["quantized"]))
|
||||
for i, val in enumerate(v["quantized"]):
|
||||
self.assertTrue(v["float"][i].shape == v["quantized"][i].shape)
|
||||
self.assertTrue(v["float"][i].shape == val.shape)
|
||||
|
||||
model_list = [
|
||||
AnnotatedConvModel(qengine),
|
||||
|
|
@ -235,7 +235,7 @@ class TestNumericSuiteEager(QuantizationTestCase):
|
|||
for v in ob_dict.values():
|
||||
self.assertTrue(len(v["float"]) == len(v["quantized"]))
|
||||
for i, val in enumerate(v["quantized"]):
|
||||
self.assertTrue(v["float"][i].shape == v["quantized"][i].shape)
|
||||
self.assertTrue(v["float"][i].shape == val.shape)
|
||||
|
||||
linear_data = self.calib_data[0][0]
|
||||
module_swap_list = [nn.Linear]
|
||||
|
|
@ -260,7 +260,7 @@ class TestNumericSuiteEager(QuantizationTestCase):
|
|||
for v in ob_dict.values():
|
||||
self.assertTrue(len(v["float"]) == len(v["quantized"]))
|
||||
for i, val in enumerate(v["quantized"]):
|
||||
self.assertTrue(v["float"][i].shape == v["quantized"][i].shape)
|
||||
self.assertTrue(v["float"][i].shape == val.shape)
|
||||
|
||||
linear_data = self.calib_data[0][0]
|
||||
module_swap_list = [nn.Linear]
|
||||
|
|
@ -314,7 +314,7 @@ class TestNumericSuiteEager(QuantizationTestCase):
|
|||
for v in ob_dict.values():
|
||||
self.assertTrue(len(v["float"]) == len(v["quantized"]))
|
||||
for i, val in enumerate(v["quantized"]):
|
||||
self.assertTrue(v["float"][i].shape == v["quantized"][i].shape)
|
||||
self.assertTrue(v["float"][i].shape == val.shape)
|
||||
|
||||
@override_qengines
|
||||
def test_compare_model_stub_linear_dynamic(self):
|
||||
|
|
@ -328,7 +328,7 @@ class TestNumericSuiteEager(QuantizationTestCase):
|
|||
for v in ob_dict.values():
|
||||
self.assertTrue(len(v["float"]) == len(v["quantized"]))
|
||||
for i, val in enumerate(v["quantized"]):
|
||||
self.assertTrue(v["float"][i].shape == v["quantized"][i].shape)
|
||||
self.assertTrue(v["float"][i].shape == val.shape)
|
||||
|
||||
linear_data = self.calib_data[0][0]
|
||||
|
||||
|
|
@ -357,7 +357,7 @@ class TestNumericSuiteEager(QuantizationTestCase):
|
|||
for v in ob_dict.values():
|
||||
self.assertTrue(len(v["float"]) == len(v["quantized"]))
|
||||
for i, val in enumerate(v["quantized"]):
|
||||
self.assertTrue(v["float"][i].shape == v["quantized"][i].shape)
|
||||
self.assertTrue(v["float"][i].shape == val.shape)
|
||||
|
||||
lstm_input = torch.rand((1, 1, 2))
|
||||
lstm_hidden = (torch.rand(1, 1, 2), torch.rand(1, 1, 2))
|
||||
|
|
@ -411,7 +411,7 @@ class TestNumericSuiteEager(QuantizationTestCase):
|
|||
for v in act_compare_dict.values():
|
||||
self.assertTrue(len(v["float"]) == len(v["quantized"]))
|
||||
for i, val in enumerate(v["quantized"]):
|
||||
self.assertTrue(v["float"][i].shape == v["quantized"][i].shape)
|
||||
self.assertTrue(v["float"][i].shape == val.shape)
|
||||
|
||||
linear_data = self.calib_data[0][0]
|
||||
model_list = [AnnotatedSingleLayerLinearModel(qengine)]
|
||||
|
|
@ -447,7 +447,7 @@ class TestNumericSuiteEager(QuantizationTestCase):
|
|||
for v in act_compare_dict.values():
|
||||
self.assertTrue(len(v["float"]) == len(v["quantized"]))
|
||||
for i, val in enumerate(v["quantized"]):
|
||||
self.assertTrue(v["float"][i].shape == v["quantized"][i].shape)
|
||||
self.assertTrue(v["float"][i].shape == val.shape)
|
||||
|
||||
@override_qengines
|
||||
def test_compare_model_outputs_linear_dynamic(self):
|
||||
|
|
@ -464,7 +464,7 @@ class TestNumericSuiteEager(QuantizationTestCase):
|
|||
for v in act_compare_dict.values():
|
||||
self.assertTrue(len(v["float"]) == len(v["quantized"]))
|
||||
for i, val in enumerate(v["quantized"]):
|
||||
self.assertTrue(v["float"][i].shape == v["quantized"][i].shape)
|
||||
self.assertTrue(v["float"][i].shape == val.shape)
|
||||
|
||||
linear_data = self.calib_data[0][0]
|
||||
|
||||
|
|
@ -493,18 +493,12 @@ class TestNumericSuiteEager(QuantizationTestCase):
|
|||
for v in act_compare_dict.values():
|
||||
self.assertTrue(len(v["float"]) == len(v["quantized"]))
|
||||
for i, val in enumerate(v["quantized"]):
|
||||
self.assertTrue(len(v["float"][i]) == len(v["quantized"][i]))
|
||||
self.assertTrue(len(v["float"][i]) == len(val))
|
||||
if i == 0:
|
||||
self.assertTrue(
|
||||
v["float"][i][0].shape == v["quantized"][i][0].shape
|
||||
)
|
||||
self.assertTrue(v["float"][i][0].shape == val[0].shape)
|
||||
else:
|
||||
self.assertTrue(
|
||||
v["float"][i][0].shape == v["quantized"][i][0].shape
|
||||
)
|
||||
self.assertTrue(
|
||||
v["float"][i][1].shape == v["quantized"][i][1].shape
|
||||
)
|
||||
self.assertTrue(v["float"][i][0].shape == val[0].shape)
|
||||
self.assertTrue(v["float"][i][1].shape == val[1].shape)
|
||||
|
||||
lstm_input = torch.rand((1, 1, 2))
|
||||
lstm_hidden = (torch.rand(1, 1, 2), torch.rand(1, 1, 2))
|
||||
|
|
|
|||
|
|
@ -525,7 +525,7 @@ class TestFxModelReportObserver(QuantizationTestCase):
|
|||
def run_model_and_common_checks(self, model, ex_input, num_epochs, batch_size):
|
||||
# split up data into batches
|
||||
split_up_data = torch.split(ex_input, batch_size)
|
||||
for epoch in range(num_epochs):
|
||||
for _epoch in range(num_epochs):
|
||||
# reset all model report obs
|
||||
model.apply(
|
||||
lambda module: module.reset_batch_and_epoch_values()
|
||||
|
|
@ -952,7 +952,7 @@ class TestFxModelReportClass(QuantizationTestCase):
|
|||
# see whether observers properly in regular nn.Module
|
||||
# there should be 4 observers present in this case
|
||||
modules_observer_cnt = 0
|
||||
for fqn, module in prepared_for_callibrate_model.named_modules():
|
||||
for module in prepared_for_callibrate_model.modules():
|
||||
if isinstance(module, ModelReportObserver):
|
||||
modules_observer_cnt += 1
|
||||
|
||||
|
|
@ -999,7 +999,7 @@ class TestFxModelReportClass(QuantizationTestCase):
|
|||
"""
|
||||
# get the number of observers stored as modules
|
||||
modules_observer_cnt = 0
|
||||
for fqn, module in callibrated_fx_module.named_modules():
|
||||
for module in callibrated_fx_module.modules():
|
||||
if isinstance(module, ModelReportObserver):
|
||||
modules_observer_cnt += 1
|
||||
|
||||
|
|
@ -1058,7 +1058,7 @@ class TestFxModelReportClass(QuantizationTestCase):
|
|||
|
||||
# now calibrate the two models
|
||||
num_iterations = 10
|
||||
for i in range(num_iterations):
|
||||
for _ in range(num_iterations):
|
||||
example_input = torch.tensor(torch.randint(100, (1, 3, 3, 3)), dtype=torch.float)
|
||||
prepared_for_callibrate_model_full(example_input)
|
||||
prepared_for_callibrate_model_single(example_input)
|
||||
|
|
@ -1324,7 +1324,7 @@ class TestFxDetectInputWeightEqualization(QuantizationTestCase):
|
|||
fused = self._get_prepped_for_calibration_model(self.TwoBlockComplexNet(), detector_set, fused=True)
|
||||
|
||||
# reporter should still give same counts even for fused model
|
||||
for prepared_for_callibrate_model, mod_report in [non_fused, fused]:
|
||||
for prepared_for_callibrate_model, _mod_report in [non_fused, fused]:
|
||||
|
||||
# supported modules to check
|
||||
mods_to_check = {nn.Linear, nn.Conv2d}
|
||||
|
|
@ -1345,7 +1345,7 @@ class TestFxDetectInputWeightEqualization(QuantizationTestCase):
|
|||
self.assertEqual(number_of_obs_found, correct_number_of_obs_inserted)
|
||||
|
||||
# assert that each of the desired modules have the observers inserted
|
||||
for fqn, module in prepared_for_callibrate_model.named_modules():
|
||||
for module in prepared_for_callibrate_model.modules():
|
||||
# check if module is a supported module
|
||||
is_in_include_list = sum(isinstance(module, x) for x in mods_to_check) > 0
|
||||
|
||||
|
|
@ -1569,7 +1569,7 @@ class TestFxDetectOutliers(QuantizationTestCase):
|
|||
self.assertEqual(number_of_obs_found, correct_number_of_obs_inserted)
|
||||
|
||||
# assert that each of the desired modules have the observers inserted
|
||||
for fqn, module in prepared_for_callibrate_model.named_modules():
|
||||
for module in prepared_for_callibrate_model.modules():
|
||||
# check if module is a supported module
|
||||
is_in_include_list = isinstance(module, tuple(mods_to_check))
|
||||
|
||||
|
|
|
|||
|
|
@ -2252,7 +2252,7 @@ class TestFXNumericSuiteNShadows(FXNumericSuiteQuantizationTestCase):
|
|||
msp(*example_input)
|
||||
|
||||
def _check_logger_count(model, exp_count_stats, exp_count_comparisons):
|
||||
for name, mod in model.named_modules():
|
||||
for mod in model.modules():
|
||||
if isinstance(mod, OutputLogger):
|
||||
self.assertTrue(
|
||||
len(mod.stats) == exp_count_stats,
|
||||
|
|
|
|||
|
|
@ -4678,7 +4678,7 @@ class TestQuantizeFx(QuantizationTestCase):
|
|||
self.assertEqual(actpp_module_count, 2)
|
||||
|
||||
actpp_module_count = 0
|
||||
for name, module in m.named_modules():
|
||||
for module in m.modules():
|
||||
if isinstance(module, actpp_module_class):
|
||||
actpp_module_count += 1
|
||||
self.assertEqual(actpp_module_count, 1)
|
||||
|
|
@ -5732,7 +5732,7 @@ class TestQuantizeFx(QuantizationTestCase):
|
|||
m = M().eval()
|
||||
qconfig_dict = func(backend)
|
||||
m = prepare_fx(m, qconfig_dict, example_inputs=(torch.randn(1, 1, 1, 1)))
|
||||
for name, mod in m.named_modules():
|
||||
for mod in m.modules():
|
||||
if _is_activation_post_process(mod) and mod.dtype == torch.quint8:
|
||||
if backend == "fbgemm":
|
||||
lower_bnd = 0
|
||||
|
|
|
|||
|
|
@ -242,14 +242,14 @@ class TestDatasetRandomSplit(TestCase):
|
|||
dataset = CustomDataset(self, x)
|
||||
dataset = random_split(dataset, [5])[0]
|
||||
data_loader = DataLoader(dataset)
|
||||
for batch in data_loader:
|
||||
for _batch in data_loader:
|
||||
pass
|
||||
|
||||
# fractional splitting
|
||||
dataset = CustomDataset(self, x)
|
||||
dataset = random_split(dataset, [1.0])[0]
|
||||
data_loader = DataLoader(dataset)
|
||||
for batch in data_loader:
|
||||
for _batch in data_loader:
|
||||
pass
|
||||
|
||||
def test_splits_reproducibility(self):
|
||||
|
|
@ -1155,7 +1155,7 @@ class TestMultiEpochDataset(IterableDataset):
|
|||
worker_info = torch.utils.data.get_worker_info()
|
||||
assert worker_info is not None
|
||||
worker_id = worker_info.id
|
||||
for idx in range(self.length // worker_info.num_workers):
|
||||
for _ in range(self.length // worker_info.num_workers):
|
||||
yield worker_id
|
||||
|
||||
def __len__(self):
|
||||
|
|
@ -2000,7 +2000,7 @@ except RuntimeError as e:
|
|||
dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers
|
||||
)
|
||||
|
||||
for ind in range(num_epochs):
|
||||
for _ in range(num_epochs):
|
||||
for batch_idx, sample in enumerate(dataloader):
|
||||
self.assertEqual(
|
||||
sample.tolist(), [batch_idx % num_workers] * batch_size
|
||||
|
|
@ -3018,7 +3018,7 @@ class IntegrationTestDataLoaderDataPipe(TestCase):
|
|||
|
||||
# Same seeds
|
||||
dl_res = []
|
||||
for epoch in range(2):
|
||||
for _epoch in range(2):
|
||||
torch.manual_seed(123)
|
||||
dl_res.append(list(dl))
|
||||
self.assertEqual(dl_res[0], dl_res[1])
|
||||
|
|
@ -3238,7 +3238,7 @@ except RuntimeError as e:
|
|||
)
|
||||
dataset.start = 0
|
||||
for i in range(10):
|
||||
for x in dataloader:
|
||||
for _ in dataloader:
|
||||
pass
|
||||
# Changing the start value here doesn't have any effect in the dataset
|
||||
# cached by the workers. since they are not recreated between epochs
|
||||
|
|
|
|||
|
|
@ -270,7 +270,7 @@ class TestFlopCounter(TestCase):
|
|||
model = torch.nn.ConvTranspose2d(4, 8, (2, 2), stride=2)
|
||||
|
||||
with FlopCounterMode() as mode:
|
||||
for i in range(50):
|
||||
for _ in range(50):
|
||||
out = model(x)
|
||||
out.sum().backward()
|
||||
self.assertExpectedInline(str(mode.get_total_flops()), """1536000""")
|
||||
|
|
|
|||
|
|
@ -262,7 +262,7 @@ class TestFXExperimental(JitTestCase):
|
|||
self.embedding_layers = torch.nn.ModuleList()
|
||||
el = torch.nn.EmbeddingBag(500000, 4, mode="sum", sparse=True)
|
||||
self.embedding_layers.append(el)
|
||||
for i in range(3):
|
||||
for _ in range(3):
|
||||
el = torch.nn.EmbeddingBag(1000000, 4, mode="sum", sparse=True)
|
||||
self.embedding_layers.append(el)
|
||||
el = torch.nn.EmbeddingBag(500000, 4, mode="sum", sparse=True)
|
||||
|
|
|
|||
|
|
@ -94,7 +94,7 @@ def strip_profiling_nodes(nodes):
|
|||
|
||||
|
||||
def warmup_forward(f, *args, profiling_count=2):
|
||||
for i in range(profiling_count):
|
||||
for _ in range(profiling_count):
|
||||
results = f(*args)
|
||||
|
||||
return results
|
||||
|
|
@ -2284,7 +2284,7 @@ class TestTEFuser(JitTestCase):
|
|||
x = torch.arange(-10, 10, dtype=torch.float32, requires_grad=True)
|
||||
xs = torch.arange(-10, 10, dtype=torch.float32, requires_grad=True)
|
||||
script = torch.jit.script(fn)
|
||||
for i in range(11):
|
||||
for _ in range(11):
|
||||
y = fn(x)
|
||||
g0 = torch.rand_like(y)
|
||||
y.backward(g0)
|
||||
|
|
@ -2514,7 +2514,7 @@ class TestTEFuser(JitTestCase):
|
|||
x, y, z = gen(n), gen(n), gen(n)
|
||||
func_s(x, y, z)
|
||||
|
||||
for incr in range(3):
|
||||
for _incr in range(3):
|
||||
func_s(*[gen(n + 1) for _ in range(3)])
|
||||
|
||||
g = torch.jit.last_executed_optimized_graph()
|
||||
|
|
@ -2678,7 +2678,7 @@ class TestTEFuser(JitTestCase):
|
|||
|
||||
f_traced = torch.jit.trace(f, (x, y))
|
||||
|
||||
for i in range(4):
|
||||
for _ in range(4):
|
||||
# make sure this doesn't error out
|
||||
res = f_traced(x, y)
|
||||
|
||||
|
|
@ -2697,7 +2697,7 @@ class TestTEFuser(JitTestCase):
|
|||
ref = fn(x)
|
||||
|
||||
script_fn = torch.jit.script(fn)
|
||||
for i in range(4):
|
||||
for _ in range(4):
|
||||
res = script_fn(x)
|
||||
|
||||
self.assertEqual(ref, res)
|
||||
|
|
|
|||
|
|
@ -130,7 +130,7 @@ class MpsMemoryLeakCheck:
|
|||
|
||||
discrepancy_detected = True
|
||||
# Query memory multiple items to ensure leak was not transient
|
||||
for n in range(3):
|
||||
for _ in range(3):
|
||||
caching_allocator_mem_allocated = torch.mps.current_allocated_memory()
|
||||
driver_mem_allocated = torch.mps.driver_allocated_memory()
|
||||
|
||||
|
|
@ -4984,7 +4984,7 @@ class TestMPS(TestCaseMPS):
|
|||
input_xs.append(torch.ones(prod, dtype=torch.int).reshape(shape).bool())
|
||||
input_xs.append(torch.zeros(prod, dtype=torch.int).reshape(shape).bool())
|
||||
|
||||
for i, cpu_x in enumerate(input_xs):
|
||||
for cpu_x in input_xs:
|
||||
x = cpu_x.detach().clone().to('mps')
|
||||
y = torch.all(x)
|
||||
ref_y = torch.all(cpu_x)
|
||||
|
|
@ -9601,7 +9601,7 @@ class TestSDPA(TestCaseMPS):
|
|||
key = torch.randn(batch_size, num_heads, seq_len, head_dim, device="mps", dtype=torch.float32)
|
||||
value = torch.randn(batch_size, num_heads, seq_len, head_dim, device="mps", dtype=torch.float32)
|
||||
memory_footprints = []
|
||||
for i in range(100):
|
||||
for _ in range(100):
|
||||
output = F.scaled_dot_product_attention(query, key, value)
|
||||
current_mem, driver_mem = get_mps_memory_usage()
|
||||
memory_footprints.append((current_mem, driver_mem))
|
||||
|
|
|
|||
|
|
@ -2040,7 +2040,7 @@ class TestCompositeCompliance(TestCase):
|
|||
|
||||
# Convert strided tensor inputs to COW tensors and make copies of
|
||||
# all inputs
|
||||
for idx, arg in enumerate(args_raw):
|
||||
for arg in args_raw:
|
||||
if is_strided_tensor(arg):
|
||||
args_copy.append(arg.detach().clone())
|
||||
args.append(torch._lazy_clone(arg))
|
||||
|
|
|
|||
|
|
@ -1433,7 +1433,7 @@ class TestSparse(TestSparseBase):
|
|||
def test_shape(num_mats, dim_i, dim_j, dim_k, nnz):
|
||||
a_list = []
|
||||
b_list = []
|
||||
for mat_idx in range(num_mats):
|
||||
for _ in range(num_mats):
|
||||
a_mat = self._gen_sparse(2, nnz, [dim_i, dim_j], dtype, device, coalesced)[0]
|
||||
b_mat = torch.randn([dim_j, dim_k], dtype=dtype, device=device)
|
||||
a_list.append(a_mat)
|
||||
|
|
@ -3558,7 +3558,7 @@ class TestSparse(TestSparseBase):
|
|||
values = torch.ones((indices.shape[1],) + shape[sparse_dim:], dtype=dtype, device=device)
|
||||
else:
|
||||
ranges = []
|
||||
for j, sz in enumerate(shape[:sparse_dim]):
|
||||
for sz in shape[:sparse_dim]:
|
||||
ranges.append(list(range(sz)))
|
||||
indices = torch.tensor(list(itertools.product(*ranges)), dtype=torch.long, device=device).t()
|
||||
values = torch.zeros((indices.shape[1],) + shape[sparse_dim:], dtype=dtype, device=device)
|
||||
|
|
|
|||
|
|
@ -46,7 +46,7 @@ class TestThroughputBenchmark(TestCase):
|
|||
|
||||
inputs = []
|
||||
|
||||
for i in range(NUM_INPUTS):
|
||||
for _ in range(NUM_INPUTS):
|
||||
inputs.append([torch.randn(B, D_in), torch.randn(B, D_in)])
|
||||
bench = ThroughputBenchmark(module)
|
||||
|
||||
|
|
|
|||
|
|
@ -2012,7 +2012,7 @@ class TestTorchDeviceType(TestCase):
|
|||
res = x.scatter_add(dim, idx, src)
|
||||
|
||||
# Checking if scatter_add is deterministic
|
||||
for i in range(5):
|
||||
for _ in range(5):
|
||||
res_next = x.scatter_add(dim, idx, src)
|
||||
self.assertEqual(res, res_next, atol=0, rtol=0)
|
||||
res = res_next
|
||||
|
|
|
|||
|
|
@ -6131,7 +6131,7 @@ class TestArrayCreationCopyArgument(TestCase):
|
|||
assert res is not base_arr
|
||||
|
||||
for copy in self.false_vals:
|
||||
res = np.array(arr, copy=False)
|
||||
res = np.array(arr, copy=copy)
|
||||
assert_array_equal(res, base_arr)
|
||||
assert res is base_arr # numpy trusts the ArrayLike
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user