Ignore F401 in all __init__.py without putting noqa (#25823)

Summary:
By adding `per-file-ignores = __init__.py: F401` into `.flake8` with `flake8>=3.7`, we can ignore F410 in all `__init__.py` without putting `# noqa: F401` line by line.

http://flake8.pycqa.org/en/latest/user/options.html?highlight=per-file-ignores#cmdoption-flake8-per-file-ignores
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25823

Differential Revision: D17252182

Pulled By: soumith

fbshipit-source-id: 87b174075b79e4078953a7521bd1a8f82405646b
This commit is contained in:
なるみ 2019-10-23 15:26:04 -07:00 committed by Facebook Github Bot
parent 76d262d4b7
commit d83389d327
22 changed files with 74 additions and 72 deletions

View File

@ -9,4 +9,5 @@ ignore =
B007,B008,
# these ignores are from flake8-comprehensions; please fix!
C400,C401,C402,C403,C404,C405,C407,C411,
per-file-ignores = __init__.py: F401
exclude = docs/src,venv,third_party,caffe2,scripts,docs/caffe2,torch/lib/include,torch/lib/tmp_install,build,torch/include,*.pyi,.git

View File

@ -1,5 +1,5 @@
from .cells import * # noqa: F401
from .factory import * # noqa: F401
from .cells import *
from .factory import *
# (output, next_state) = cell(input, state)
seqLength = 100

View File

@ -1,4 +1,4 @@
from .squeezenet import * # noqa: F401
from .super_resolution import * # noqa: F401
from .op_test import * # noqa: F401
from .srresnet import * # noqa: F401
from .squeezenet import *
from .super_resolution import *
from .op_test import *
from .srresnet import *

View File

@ -1,2 +1,2 @@
from .module_loader import import_module # noqa: F401
from .cwrap_common import set_declaration_defaults, sort_by_number_of_args # noqa: F401
from .module_loader import import_module
from .cwrap_common import set_declaration_defaults, sort_by_number_of_args

View File

@ -15,7 +15,7 @@ import sys
import platform
from ._utils import _import_dotted_name
from ._utils_internal import get_file_path, prepare_multiprocessing_environment
from .version import __version__ # noqa: F401
from .version import __version__
from ._six import string_classes as _string_classes
__all__ = [
@ -41,7 +41,7 @@ import os as _dl_flags
# if we have numpy, it *must* be imported before the call to setdlopenflags()
# or there is risk that later c modules will segfault when importing numpy
try:
import numpy as _np # noqa: F401
import numpy as _np
except ImportError:
pass
@ -301,7 +301,7 @@ del BFloat16StorageBase
import torch.cuda
import torch.autograd
from torch.autograd import no_grad, enable_grad, set_grad_enabled # noqa: F401
from torch.autograd import no_grad, enable_grad, set_grad_enabled
import torch.nn
import torch.nn.intrinsic
import torch.nn.quantized
@ -337,8 +337,8 @@ def compiled_with_cxx11_abi():
# Import the ops "namespace"
from torch._ops import ops # noqa: F401
from torch._classes import classes # noqa: F401
from torch._ops import ops
from torch._classes import classes
# Import the quasi random sampler
import torch.quasirandom

View File

@ -8,11 +8,11 @@ import torch
import warnings
from .variable import Variable
from .function import Function, NestedIOFunction # noqa: F401
from .gradcheck import gradcheck, gradgradcheck # noqa: F401
from .grad_mode import no_grad, enable_grad, set_grad_enabled # noqa: F401
from .anomaly_mode import detect_anomaly, set_detect_anomaly # noqa: F401
from . import profiler # noqa: F401
from .function import Function, NestedIOFunction
from .gradcheck import gradcheck, gradgradcheck
from .grad_mode import no_grad, enable_grad, set_grad_enabled
from .anomaly_mode import detect_anomaly, set_detect_anomaly
from . import profiler
__all__ = ['Variable', 'Function', 'backward', 'grad_mode']

View File

@ -1 +1 @@
from .tensor import * # noqa: F401
from .tensor import *

View File

@ -555,7 +555,7 @@ torch._storage_classes.add(HalfStorage)
torch._storage_classes.add(BoolStorage)
torch._storage_classes.add(BFloat16Storage)
from . import sparse # noqa: F401
from . import profiler # noqa: F401
from . import nvtx # noqa: F401
from .streams import Stream, Event # noqa: F401
from . import sparse
from . import profiler
from . import nvtx
from .streams import Stream, Event

View File

@ -13,8 +13,9 @@ if is_available() and not (torch._C._c10d_init() and torch._C._rpc_init() and to
if is_available():
from .distributed_c10d import * # noqa: F401
from .distributed_c10d import *
# Variables prefixed with underscore are not auto imported
# See the comment in `distributed_c10d.py` above `_backend` on why we expose
# this.
from .distributed_c10d import _backend # noqa: F401
from .distributed_c10d import _backend

View File

@ -1 +1 @@
from .onnx import * # noqa: F401
from .onnx import *

View File

@ -32,8 +32,8 @@ import warnings
from collections import OrderedDict
# These are imported so users can access them from the `torch.jit` module
from torch._jit_internal import Final, _overload, _overload_method # noqa: F401
from torch._jit_internal import ignore, export, unused # noqa: F401
from torch._jit_internal import Final, _overload, _overload_method
from torch._jit_internal import ignore, export, unused
if sys.version_info[0] > 2:
import pathlib

View File

@ -22,7 +22,7 @@ __all__ = ['set_sharing_strategy', 'get_sharing_strategy',
'get_all_sharing_strategies']
from multiprocessing import * # noqa: F401
from multiprocessing import *
__all__ += multiprocessing.__all__
@ -36,13 +36,13 @@ torch._C._multiprocessing_init()
if sys.version_info < (3, 3):
"""Override basic classes in Python 2.7 and Python 3.3 to use ForkingPickler
for serialization. Later versions of Python already use ForkingPickler."""
from .queue import Queue, SimpleQueue # noqa: F401
from .pool import Pool # noqa: F401
from .queue import Queue, SimpleQueue
from .pool import Pool
"""Add helper function to spawn N processes and wait for completion of any of
them. This depends `mp.get_context` which was added in Python 3.4."""
from .spawn import spawn, SpawnContext, _supports_context # noqa: F401
from .spawn import spawn, SpawnContext, _supports_context
if sys.platform == 'darwin' or sys.platform == 'win32':

View File

@ -1,5 +1,5 @@
from .modules import * # noqa: F401
from .parameter import Parameter # noqa: F401
from .parallel import DataParallel # noqa: F401
from . import init # noqa: F401
from . import utils # noqa: F401
from .modules import *
from .parameter import Parameter
from .parallel import DataParallel
from . import init
from . import utils

View File

@ -1,2 +1,2 @@
from __future__ import absolute_import, division, print_function, unicode_literals
from .modules import * # noqa: F401
from .modules import *

View File

@ -3,4 +3,4 @@ from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from .modules import * # noqa: F401
from .modules import *

View File

@ -1,4 +1,4 @@
from __future__ import absolute_import, division, print_function, unicode_literals
from .modules import * # noqa: F401
from .modules import *

View File

@ -1,6 +1,6 @@
from . import rnn # noqa: F401
from .clip_grad import clip_grad_norm, clip_grad_norm_, clip_grad_value_ # noqa: F401
from .weight_norm import weight_norm, remove_weight_norm # noqa: F401
from .convert_parameters import parameters_to_vector, vector_to_parameters # noqa: F401
from .spectral_norm import spectral_norm, remove_spectral_norm # noqa: F401
from .fusion import fuse_conv_bn_eval, fuse_conv_bn_weights # noqa: F401
from . import rnn
from .clip_grad import clip_grad_norm, clip_grad_norm_, clip_grad_value_
from .weight_norm import weight_norm, remove_weight_norm
from .convert_parameters import parameters_to_vector, vector_to_parameters
from .spectral_norm import spectral_norm, remove_spectral_norm
from .fusion import fuse_conv_bn_eval, fuse_conv_bn_weights

View File

@ -5,19 +5,19 @@ enough, so that more sophisticated ones can be also easily integrated in the
future.
"""
from .adadelta import Adadelta # noqa: F401
from .adagrad import Adagrad # noqa: F401
from .adam import Adam # noqa: F401
from .adamw import AdamW # noqa: F401
from .sparse_adam import SparseAdam # noqa: F401
from .adamax import Adamax # noqa: F401
from .asgd import ASGD # noqa: F401
from .sgd import SGD # noqa: F401
from .rprop import Rprop # noqa: F401
from .rmsprop import RMSprop # noqa: F401
from .optimizer import Optimizer # noqa: F401
from .lbfgs import LBFGS # noqa: F401
from . import lr_scheduler # noqa: F401
from .adadelta import Adadelta
from .adagrad import Adagrad
from .adam import Adam
from .adamw import AdamW
from .sparse_adam import SparseAdam
from .adamax import Adamax
from .asgd import ASGD
from .sgd import SGD
from .rprop import Rprop
from .rmsprop import RMSprop
from .optimizer import Optimizer
from .lbfgs import LBFGS
from . import lr_scheduler
del adadelta
del adagrad

View File

@ -1,10 +1,10 @@
from __future__ import absolute_import, division, print_function, unicode_literals
from .quantize import * # noqa: F401
from .observer import * # noqa: F401
from .qconfig import * # noqa: F401
from .fake_quantize import * # noqa: F401
from .fuse_modules import fuse_modules # noqa: F401
from .stubs import * # noqa: F401
from .quantize import *
from .observer import *
from .qconfig import *
from .fake_quantize import *
from .fuse_modules import fuse_modules
from .stubs import *
def default_eval_fn(model, calib_data):
r"""

View File

@ -1,6 +1,6 @@
from __future__ import absolute_import, division, print_function, unicode_literals
from .throughput_benchmark import ThroughputBenchmark # noqa: F401
from .throughput_benchmark import ThroughputBenchmark
# Set the module for a given object for nicer printing
def set_module(obj, mod):

View File

@ -1,4 +1,4 @@
from .sampler import Sampler, SequentialSampler, RandomSampler, SubsetRandomSampler, WeightedRandomSampler, BatchSampler # noqa: F401
from .distributed import DistributedSampler # noqa: F401
from .dataset import Dataset, IterableDataset, TensorDataset, ConcatDataset, ChainDataset, Subset, random_split # noqa: F401
from .dataloader import DataLoader, _DatasetKind, get_worker_info # noqa: F401
from .sampler import Sampler, SequentialSampler, RandomSampler, SubsetRandomSampler, WeightedRandomSampler, BatchSampler
from .distributed import DistributedSampler
from .dataset import Dataset, IterableDataset, TensorDataset, ConcatDataset, ChainDataset, Subset, random_split
from .dataloader import DataLoader, _DatasetKind, get_worker_info

View File

@ -11,7 +11,7 @@ import sys
import atexit
# old private location of the ExceptionWrapper that some users rely on:
from torch._utils import ExceptionWrapper # noqa: F401
from torch._utils import ExceptionWrapper
IS_WINDOWS = sys.platform == "win32"
@ -42,4 +42,4 @@ def _set_python_exit_flag():
atexit.register(_set_python_exit_flag)
from . import worker, signal_handling, pin_memory, collate, fetch # noqa: F401
from . import worker, signal_handling, pin_memory, collate, fetch