mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Remove old code that is unused in test/ (#66331)
Summary: . Pull Request resolved: https://github.com/pytorch/pytorch/pull/66331 Reviewed By: gchanan Differential Revision: D31533549 Pulled By: albanD fbshipit-source-id: 5addd11edc4199a88f10f0ff236be59ec2289903
This commit is contained in:
parent
4775419850
commit
d3b29afbb6
|
|
@ -1,14 +0,0 @@
|
|||
|
||||
th test.lua > lua.out
|
||||
python3 test.py > python.out
|
||||
|
||||
diff lua.out python.out >/dev/null 2>&1
|
||||
RESULT=$?
|
||||
if [[ RESULT -eq 0 ]]; then
|
||||
echo "PASS"
|
||||
else
|
||||
echo "FAIL"
|
||||
echo "Press ENTER to open vimdiff"
|
||||
read
|
||||
vimdiff lua.out python.out
|
||||
fi
|
||||
|
|
@ -1,32 +0,0 @@
|
|||
local cjson = require 'cjson'
|
||||
require 'optim'
|
||||
|
||||
function rosenbrock(t)
|
||||
x, y = t[1], t[2]
|
||||
return (1 - x) ^ 2 + 100 * (y - x^2)^2
|
||||
end
|
||||
|
||||
function drosenbrock(t)
|
||||
x, y = t[1], t[2]
|
||||
return torch.DoubleTensor({-400 * x * (y - x^2) - 2 * (1 - x), 200 * x * (y - x^2)})
|
||||
end
|
||||
|
||||
local fd = io.open('tests.json', 'r')
|
||||
local tests = cjson.decode(fd:read('*a'))
|
||||
fd:close()
|
||||
|
||||
for i, test in ipairs(tests) do
|
||||
print(test.algorithm)
|
||||
algorithm = optim[test.algorithm]
|
||||
for i, config in ipairs(test.config) do
|
||||
print('================================================================================')
|
||||
params = torch.DoubleTensor({1.5, 1.5})
|
||||
for i = 1, 100 do
|
||||
function closure(x)
|
||||
return rosenbrock(x), drosenbrock(x)
|
||||
end
|
||||
algorithm(closure, params, config)
|
||||
print(string.format('%.8f\t%.8f', params[1], params[2]))
|
||||
end
|
||||
end
|
||||
end
|
||||
|
|
@ -1,41 +0,0 @@
|
|||
import json
|
||||
import torch
|
||||
import torch.legacy.optim as optim
|
||||
|
||||
|
||||
def rosenbrock(tensor):
|
||||
x, y = tensor
|
||||
return (1 - x) ** 2 + 100 * (y - x ** 2) ** 2
|
||||
|
||||
|
||||
def drosenbrock(tensor):
|
||||
x, y = tensor
|
||||
return torch.DoubleTensor((-400 * x * (y - x ** 2) - 2 * (1 - x), 200 * (y - x ** 2)))
|
||||
|
||||
algorithms = {
|
||||
'adadelta': optim.adadelta,
|
||||
'adagrad': optim.adagrad,
|
||||
'adam': optim.adam,
|
||||
'adamw': optim.adamw,
|
||||
'adamax': optim.adamax,
|
||||
'asgd': optim.asgd,
|
||||
'cg': optim.cg,
|
||||
'nag': optim.nag,
|
||||
'rmsprop': optim.rmsprop,
|
||||
'rprop': optim.rprop,
|
||||
'sgd': optim.sgd,
|
||||
'lbfgs': optim.lbfgs,
|
||||
}
|
||||
|
||||
with open('tests.json', 'r') as f:
|
||||
tests = json.loads(f.read())
|
||||
|
||||
for test in tests:
|
||||
print(test['algorithm'] + '\t')
|
||||
algorithm = algorithms[test['algorithm']]
|
||||
for config in test['config']:
|
||||
print('================================================================================\t')
|
||||
params = torch.DoubleTensor((1.5, 1.5))
|
||||
for i in range(100):
|
||||
algorithm(lambda x: (rosenbrock(x), drosenbrock(x)), params, config)
|
||||
print('{:.8f}\t{:.8f}\t'.format(params[0], params[1]))
|
||||
|
|
@ -1,142 +0,0 @@
|
|||
[
|
||||
{
|
||||
"algorithm": "adadelta",
|
||||
"config": [
|
||||
{},
|
||||
{"rho": 0.95},
|
||||
{"rho": 0.95, "eps": 1e-3},
|
||||
{"weightDecay": 0.2}
|
||||
]
|
||||
},
|
||||
{
|
||||
"algorithm": "adagrad",
|
||||
"config": [
|
||||
{}
|
||||
]
|
||||
},
|
||||
{
|
||||
"algorithm": "adam",
|
||||
"config": [
|
||||
{},
|
||||
{"learningRate": 1e-4},
|
||||
{"learningRate": 1e-4, "beta1": 0.92},
|
||||
{"learningRate": 1e-4, "beta1": 0.92, "beta2": 0.96},
|
||||
{"learningRate": 1e-4, "beta1": 0.92, "beta2": 0.96, "epsilon": 1e-3},
|
||||
{"learningRate": 1e-4, "weightDecay": 0.1}
|
||||
]
|
||||
},
|
||||
{
|
||||
"algorithm": "radam",
|
||||
"config": [
|
||||
{},
|
||||
{"learningRate": 1e-4},
|
||||
{"learningRate": 1e-4, "beta1": 0.92},
|
||||
{"learningRate": 1e-4, "beta1": 0.92, "beta2": 0.96},
|
||||
{"learningRate": 1e-4, "beta1": 0.92, "beta2": 0.96, "epsilon": 1e-3},
|
||||
{"learningRate": 1e-4, "weightDecay": 0.1}
|
||||
]
|
||||
},
|
||||
{
|
||||
"algorithm": "adamw",
|
||||
"config": [
|
||||
{},
|
||||
{"learningRate": 1e-4},
|
||||
{"learningRate": 1e-4, "beta1": 0.92},
|
||||
{"learningRate": 1e-4, "beta1": 0.92, "beta2": 0.96},
|
||||
{"learningRate": 1e-4, "beta1": 0.92, "beta2": 0.96, "epsilon": 1e-3},
|
||||
{"learningRate": 1e-4, "weightDecay": 0.1}
|
||||
]
|
||||
},
|
||||
{
|
||||
"algorithm": "nadam",
|
||||
"config": [
|
||||
{},
|
||||
{"learningRate": 1e-4},
|
||||
{"learningRate": 1e-4, "beta1": 0.92},
|
||||
{"learningRate": 1e-4, "beta1": 0.92, "beta2": 0.96},
|
||||
{"learningRate": 1e-4, "beta1": 0.92, "beta2": 0.96, "epsilon": 1e-3},
|
||||
{"learningRate": 1e-4, "weightDecay": 0.1}
|
||||
]
|
||||
},
|
||||
{
|
||||
"algorithm": "adamax",
|
||||
"config": [
|
||||
{},
|
||||
{"learningRate": 1e-4},
|
||||
{"learningRate": 1e-4, "beta1": 0.92},
|
||||
{"learningRate": 1e-4, "beta1": 0.92, "beta2": 0.96},
|
||||
{"learningRate": 1e-4, "beta1": 0.92, "beta2": 0.96, "epsilon": 1e-3}
|
||||
]
|
||||
},
|
||||
{
|
||||
"algorithm": "asgd",
|
||||
"config": [
|
||||
{},
|
||||
{"eta0": 1e-4},
|
||||
{"eta0": 1e-4, "lambda": 1e-2},
|
||||
{"eta0": 1e-4, "lambda": 1e-2, "alpha": 0.9},
|
||||
{"eta0": 1e-4, "lambda": 1e-2, "alpha": 0.9, "t0": 10}
|
||||
]
|
||||
},
|
||||
{
|
||||
"algorithm": "cg",
|
||||
"config": [
|
||||
{},
|
||||
{"rho": 0.02},
|
||||
{"sig": 0.06},
|
||||
{"int": 0.12},
|
||||
{"ext": 3.2},
|
||||
{"maxIter": 5},
|
||||
{"ratio": 95}
|
||||
]
|
||||
},
|
||||
{
|
||||
"algorithm": "nag",
|
||||
"config": [
|
||||
{},
|
||||
{"learningRate": 1e-4},
|
||||
{"learningRate": 1e-4, "learningRateDecay": 0.1},
|
||||
{"learningRate": 1e-4, "weightDecay": 0.3},
|
||||
{"learningRate": 1e-4, "momentum": 0.95},
|
||||
{"learningRate": 1e-4, "momentum": 0.95, "dampening": 0.8}
|
||||
]
|
||||
},
|
||||
{
|
||||
"algorithm": "rmsprop",
|
||||
"config": [
|
||||
{},
|
||||
{"learningRate": 1e-4},
|
||||
{"learningRate": 1e-4, "alpha": 0.95},
|
||||
{"learningRate": 1e-4, "alpha": 0.95, "epsilon": 1e-3},
|
||||
{"weightDecay": 0.2}
|
||||
]
|
||||
},
|
||||
{
|
||||
"algorithm": "rprop",
|
||||
"config": [
|
||||
{},
|
||||
{"stepsize": 0.05},
|
||||
{"stepsize": 0.05, "etaplus": 1.15},
|
||||
{"stepsize": 0.05, "etaplus": 1.15, "etaminus": 0.6},
|
||||
{"stepsize": 0.05, "etaplus": 1.15, "etaminus": 0.6, "stepsizemax": 1, "stepsizemin": 1e-3},
|
||||
{"stepsize": 0.05, "etaplus": 1.15, "etaminus": 0.6, "niter": 10}
|
||||
]
|
||||
},
|
||||
{
|
||||
"algorithm": "sgd",
|
||||
"config": [
|
||||
{},
|
||||
{"learningRate": 1e-4},
|
||||
{"learningRate": 1e-4, "momentum": 0.95, "dampening": 0.9},
|
||||
{"learningRate": 1e-4, "nesterov": true, "momentum": 0.95, "dampening": 0},
|
||||
{"weightDecay": 0.2}
|
||||
]
|
||||
},
|
||||
{
|
||||
"algorithm": "lbfgs",
|
||||
"config": [
|
||||
{},
|
||||
{"learningRate": 1e-1}
|
||||
]
|
||||
}
|
||||
]
|
||||
Loading…
Reference in New Issue
Block a user