mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
[cuDNN][Quantization] Don't print when plan finalization fails in cuDNN quantization backend (#128177)
Similar in spirit to #125790, hopefully addresses failures seen for cuDNN 9.1 upgrade: #https://github.com/pytorch/pytorch/pull/128166 CC @nWEIdia @atalman Pull Request resolved: https://github.com/pytorch/pytorch/pull/128177 Approved by: https://github.com/nWEIdia, https://github.com/Skylion007
This commit is contained in:
parent
8a09940a54
commit
cac7a22b92
|
|
@ -242,7 +242,7 @@ Tensor add(Tensor qa, Tensor qb, double output_scale, int64_t output_zero_point)
|
|||
run(plan_desc);
|
||||
execution_plan_cache[key] = plan_desc;
|
||||
return quantized_output.view(orig_sizes);
|
||||
} catch (cudnn_frontend::cudnnException &e) {std::cout << "cudnn error:" << e.what() << std::endl;} catch(c10::CuDNNError &e) { std::cout << "other error" << e.what() << std::endl;}
|
||||
} catch (cudnn_frontend::cudnnException &e) {} catch(c10::CuDNNError &e) {}
|
||||
}
|
||||
|
||||
TORCH_CHECK(false, "Unable to find an engine to execute this computation in Quantized Add Cudnn");
|
||||
|
|
|
|||
|
|
@ -252,7 +252,7 @@ void PackedConvWeightCudnn<kSpatialDim>::apply_impl_helper(const at::Tensor& qua
|
|||
run(plan);
|
||||
execution_plan_cache.emplace(key, plan);
|
||||
return;
|
||||
} catch (cudnn_frontend::cudnnException &e) {std::cout << "cudnn error:" << e.what() << std::endl;} catch(c10::CuDNNError &e) { std::cout << "other error" << e.what() << std::endl;}
|
||||
} catch (cudnn_frontend::cudnnException &e) {} catch(c10::CuDNNError &e) {}
|
||||
}
|
||||
|
||||
TORCH_CHECK(false, "Unable to find an engine to execute this computation in Quantized Conv2D Cudnn");
|
||||
|
|
|
|||
|
|
@ -286,7 +286,7 @@ void PackedLinearWeightCudnn::apply_impl_helper(const at::Tensor& quantized_outp
|
|||
run(plan);
|
||||
execution_plan_cache.emplace(key, plan);
|
||||
return;
|
||||
} catch (cudnn_frontend::cudnnException &e) {std::cout << "cudnn error:" << e.what() << std::endl;} catch(c10::CuDNNError &e) { std::cout << "other error" << e.what() << std::endl;}
|
||||
} catch (cudnn_frontend::cudnnException &e) {} catch(c10::CuDNNError &e) {}
|
||||
}
|
||||
|
||||
TORCH_CHECK(false, "Unable to find an engine to execute this computation Quantized Linear Cudnn");
|
||||
|
|
|
|||
|
|
@ -4052,7 +4052,6 @@ class TestQuantizedLinear(TestCase):
|
|||
use_channelwise=st.sampled_from([False])) # channelwise currently not supported for qlinear cudnn
|
||||
@skipIfNoFBGEMM
|
||||
@unittest.skipIf(not TEST_CUDNN, "cudnn is not enabled.")
|
||||
@unittest.skipIf(TEST_CUDNN and torch.backends.cudnn.version() == 90100, "expected failure on cuDNN 9.1.0")
|
||||
@unittest.skipIf(not SM80OrLater, "requires sm80 or later.")
|
||||
@unittest.skipIf(TEST_ROCM, "not supported on rocm.")
|
||||
# TODO: check with yang regarding CUDNN flags
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user