Added mobile exporter

Summary: Basically takes in a live net and creates an init_net and predict_net which can be written to file and run in Predictor

Reviewed By: salexspb

Differential Revision: D4989425

fbshipit-source-id: 8052065da9ed763d48bd9e1e19f7697ef60a2829
This commit is contained in:
Bram Wasti 2017-05-24 11:20:11 -07:00 committed by Facebook Github Bot
parent db1d62caf7
commit c55be38e63
2 changed files with 141 additions and 0 deletions

View File

@ -0,0 +1,71 @@
## @package mobile_exporter
# Module caffe2.python.mobile_exporter
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core, utils
from caffe2.proto import caffe2_pb2
def Export(workspace, net, params):
"""Returns init_net and predict_net suitable for writing to disk
and loading into a Predictor"""
predict_net = caffe2_pb2.NetDef()
predict_net.CopyFrom(net.Proto())
init_net = caffe2_pb2.NetDef()
# Populate the init_net.
ssa, blob_versions = core.get_ssa(net)
inputs = []
for versioned_inputs, _ in ssa:
inputs += [name for name, _ in versioned_inputs]
input_blobs = [blob_name for blob_name, version in
blob_versions.items()
if version == 0 and blob_name not in params]
# Blobs that are never used as an input to another layer,
# i.e. strictly output blobs.
output_blobs = [blob_name for blob_name, version in
blob_versions.items()
if version != 0 and blob_name not in inputs]
for blob_ref in params:
blob_name = str(blob_ref)
blob = workspace.FetchBlob(blob_name)
init_net.op.extend(
[
core.CreateOperator(
"GivenTensorFill", [], [blob_name],
arg=[
utils.MakeArgument("shape", blob.shape),
utils.MakeArgument("values", blob)
]
)
]
)
# We have to make sure the blob exists in the namespace
# and we can do so with fake data. (Which is immediately overwritten
# by any typical usage)
for blob_name in input_blobs:
init_net.op.extend(
[
core.CreateOperator(
"GivenTensorFill", [], [blob_name],
arg=[
utils.MakeArgument("shape", [1, 1]),
utils.MakeArgument("values", [0.0])
]
)
]
)
# Now we make input/output_blobs line up with what Predictor expects.
del predict_net.external_input[:]
predict_net.external_input.extend(input_blobs)
# For populating weights
predict_net.external_input.extend(net.Proto().external_input)
# Ensure the output is also consistent with what we want
del predict_net.external_output[:]
predict_net.external_output.extend(output_blobs)
return init_net, predict_net

View File

@ -0,0 +1,70 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python.test_util import TestCase
from caffe2.python import workspace, brew
from caffe2.python.model_helper import ModelHelper
from caffe2.python.predictor import mobile_exporter
import numpy as np
class TestMobileExporter(TestCase):
def test_mobile_exporter(self):
model = ModelHelper(name="mobile_exporter_test_model")
# Test LeNet
brew.conv(model, 'data', 'conv1', dim_in=1, dim_out=20, kernel=5)
brew.max_pool(model, 'conv1', 'pool1', kernel=2, stride=2)
brew.conv(model, 'pool1', 'conv2', dim_in=20, dim_out=50, kernel=5)
brew.max_pool(model, 'conv2', 'pool2', kernel=2, stride=2)
brew.fc(model, 'pool2', 'fc3', dim_in=50 * 4 * 4, dim_out=500)
brew.relu(model, 'fc3', 'fc3')
brew.fc(model, 'fc3', 'pred', 500, 10)
brew.softmax(model, 'pred', 'out')
# Create our mobile exportable networks
workspace.RunNetOnce(model.param_init_net)
init_net, predict_net = mobile_exporter.Export(
workspace, model.net, model.params
)
# Populate the workspace with data
np_data = np.random.rand(1, 1, 28, 28).astype(np.float32)
workspace.FeedBlob("data", np_data)
workspace.CreateNet(model.net)
workspace.RunNet(model.net)
ref_out = workspace.FetchBlob("out")
# Clear the workspace
workspace.ResetWorkspace()
# Populate the workspace with data
workspace.RunNetOnce(init_net)
# Fake "data" is populated by init_net, we have to replace it
workspace.FeedBlob("data", np_data)
# Overwrite the old net
workspace.CreateNet(predict_net, True)
workspace.RunNet(predict_net.name)
manual_run_out = workspace.FetchBlob("out")
np.testing.assert_allclose(
ref_out, manual_run_out, atol=1e-10, rtol=1e-10
)
# Clear the workspace
workspace.ResetWorkspace()
# Predictor interface test (simulates writing to disk)
predictor = workspace.Predictor(
init_net.SerializeToString(), predict_net.SerializeToString()
)
# Output is a vector of outputs but we only care about the first and only result
predictor_out = predictor.run([np_data])
assert len(predictor_out) == 1
predictor_out = predictor_out[0]
np.testing.assert_allclose(
ref_out, predictor_out, atol=1e-10, rtol=1e-10
)