[BE] Remove bottleneck (#163210)

Some cleanup related to this RFC: https://github.com/pytorch/pytorch/issues/68742
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163210
Approved by: https://github.com/ezyang
This commit is contained in:
PaliC 2025-09-17 23:48:22 +00:00 committed by PyTorch MergeBot
parent cfb8aec1a4
commit c43ccfbc2d
10 changed files with 0 additions and 495 deletions

View File

@ -964,7 +964,6 @@ exclude_patterns = [
'test/jit/**', # should be run through test/test_jit.py
'test/ao/sparsity/**', # should be run through test/test_ao_sparsity.py
'test/fx/**', # should be run through test/test_fx.py
'test/bottleneck_test/**', # excluded by test/run_test.py
'test/package/**', # excluded by test/run_test.py
'test/distributed/argparse_util_test.py',
'test/distributed/bin/test_script.py',
@ -1410,8 +1409,6 @@ exclude_patterns = [
'torch/utils/benchmark/utils/timer.py',
'torch/utils/benchmark/utils/valgrind_wrapper/__init__.py',
'torch/utils/benchmark/utils/valgrind_wrapper/timer_interface.py',
'torch/utils/bottleneck/__init__.py',
'torch/utils/bottleneck/__main__.py',
'torch/utils/bundled_inputs.py',
'torch/utils/checkpoint.py',
'torch/utils/collect_env.py',

View File

@ -1,62 +0,0 @@
torch.utils.bottleneck
======================
.. automodule:: torch.utils.bottleneck
.. currentmodule:: torch.utils.bottleneck
`torch.utils.bottleneck` is a tool that can be used as an initial step for
debugging bottlenecks in your program. It summarizes runs of your script with
the Python profiler and PyTorch's autograd profiler.
Run it on the command line with
::
python -m torch.utils.bottleneck /path/to/source/script.py [args]
where [args] are any number of arguments to `script.py`, or run
``python -m torch.utils.bottleneck -h`` for more usage instructions.
.. warning::
Because your script will be profiled, please ensure that it exits in a
finite amount of time.
.. warning::
Due to the asynchronous nature of CUDA kernels, when running against
CUDA code, the cProfile output and CPU-mode autograd profilers may
not show correct timings: the reported CPU time reports the amount of time
used to launch the kernels but does not include the time the kernel
spent executing on a GPU unless the operation does a synchronize.
Ops that do synchronize appear to be extremely expensive under regular
CPU-mode profilers.
In these case where timings are incorrect, the CUDA-mode autograd profiler
may be helpful.
.. note::
To decide which (CPU-only-mode or CUDA-mode) autograd profiler output to
look at, you should first check if your script is CPU-bound
("CPU total time is much greater than CUDA total time").
If it is CPU-bound, looking at the results of the CPU-mode autograd
profiler will help. If on the other hand your script spends most of its
time executing on the GPU, then it makes sense to start
looking for responsible CUDA operators in the output of the CUDA-mode
autograd profiler.
Of course the reality is much more complicated and your script might not be
in one of those two extremes depending on the part of the model you're
evaluating. If the profiler outputs don't help, you could try looking at
the result of :func:`torch.autograd.profiler.emit_nvtx()` with ``nvprof``.
However, please take into account that the NVTX overhead is very high and
often gives a heavily skewed timeline. Similarly, ``Intel® VTune™ Profiler``
helps to analyze performance on Intel platforms further with
:func:`torch.autograd.profiler.emit_itt()`.
.. warning::
If you are profiling CUDA code, the first profiler that ``bottleneck`` runs
(cProfile) will include the CUDA startup time (CUDA buffer allocation cost)
in its time reporting. This should not matter if your bottlenecks result
in code much slower than the CUDA startup time.
For more complicated uses of the profilers (like in a multi-GPU case),
please see https://docs.python.org/3/library/profile.html
or :func:`torch.autograd.profiler.profile()` for more information.

View File

@ -76,7 +76,6 @@ storage
torch.testing <testing>
torch.utils <utils>
torch.utils.benchmark <benchmark_utils>
torch.utils.bottleneck <bottleneck>
torch.utils.checkpoint <checkpoint>
torch.utils.cpp_extension <cpp_extension>
torch.utils.data <data>

View File

@ -1,7 +0,0 @@
# Owner(s): ["module: unknown"]
import torch
x = torch.ones((3, 3), requires_grad=True)
(3 * x).sum().backward()

View File

@ -1,17 +0,0 @@
# Owner(s): ["module: unknown"]
import argparse
import torch
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required args. Raises error if they aren't passed.
parser.add_argument("--foo", help="foo", required=True)
parser.add_argument("--bar", help="bar", required=True)
_ = parser.parse_args()
x = torch.ones((3, 3), requires_grad=True)
(3 * x).sum().backward()

View File

@ -1,29 +0,0 @@
# Owner(s): ["module: unknown"]
import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = nn.Linear(20, 20)
def forward(self, input):
out = self.linear(input[:, 10:30])
return out.sum()
def main():
data = torch.randn(10, 50).cuda()
model = Model().cuda()
optimizer = torch.optim.SGD(model.parameters(), lr=0.0001)
for _ in range(10):
optimizer.zero_grad()
loss = model(data)
loss.backward()
optimizer.step()
if __name__ == "__main__":
main()

View File

@ -3,7 +3,6 @@
import os
import random
import re
import shutil
import subprocess
import sys
@ -633,151 +632,6 @@ class TestDataLoaderUtils(TestCase):
test_dir = os.path.abspath(os.path.dirname(str(__file__)))
@unittest.skipIf(
"SKIP_TEST_BOTTLENECK" in os.environ.keys(), "SKIP_TEST_BOTTLENECK is set"
)
class TestBottleneck(TestCase):
def _run(self, command, timeout=30):
"""Returns (return-code, stdout, stderr)"""
import subprocess
p = subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
shell=True,
)
try:
output, err = p.communicate(timeout=timeout)
except subprocess.TimeoutExpired:
p.kill()
output, err = p.communicate()
rc = p.returncode
output_str = output.decode("ascii")
err_str = err.decode("ascii")
return (rc, output_str, err_str)
def _run_bottleneck(self, test_file, scriptargs=""):
curdir = os.path.dirname(os.path.abspath(__file__))
filepath = f"{curdir}/{test_file}"
if scriptargs != "":
scriptargs = f" {scriptargs}"
rc, out, err = self._run(
f"{sys.executable} -m torch.utils.bottleneck {filepath}{scriptargs}"
)
return rc, out, err
def _check_run_args(self):
# Check that this fails due to missing args
rc, out, err = self._run_bottleneck("bottleneck_test/test_args.py")
self.assertEqual(
rc,
2,
atol=0,
rtol=0,
msg=self._fail_msg("Missing args should error", out + err),
)
# This should succeed
rc, out, err = self._run_bottleneck(
"bottleneck_test/test_args.py", "--foo foo --bar bar"
)
self.assertEqual(
rc,
0,
atol=0,
rtol=0,
msg=self._fail_msg("Should pass args to script", out + err),
)
def _fail_msg(self, msg, output):
return f"{msg}, output was:\n{output}"
def _check_environment_summary(self, output):
results = re.search("Environment Summary", output)
self.assertIsNotNone(
results, self._fail_msg("Should have Environment Summary", output)
)
# Up to five lines away from the heading, there should be the version number
results = re.search(
r"Environment Summary.*(\n.*){,5}\nPyTorch \d+\.\d+", output
)
self.assertIsNotNone(
results, self._fail_msg("Should have PyTorch version", output)
)
def _check_cprof_summary(self, output):
results = re.search("cProfile output", output)
self.assertIsNotNone(
results, self._fail_msg("Should have cProfile output", output)
)
# This assumes that after the cProfile output section we have
# the autograd profiler output
results = re.search(
r"cProfile output.*(\n.*){6,50}\n.*autograd profiler output", output
)
self.assertIsNotNone(
results,
self._fail_msg(
"Distance between cProfile and autograd prof out not in [6, 50] lines",
output,
),
)
def _check_autograd_summary(self, output):
results = re.search("autograd profiler output", output)
self.assertIsNotNone(
results, self._fail_msg("Should have autograd profiler output", output)
)
# This assumes that after the autograd profiler output is the end of the
# output.
results = re.search(r"autograd profiler output.*(\n.*){6,100}", output)
self.assertIsNotNone(
results,
self._fail_msg(
"Distance between autograd prof output and end of output not in [6, 100] lines",
output,
),
)
def _check_cuda(self, output):
if HAS_CUDA:
results = re.search("CUDA mode", output)
self.assertIsNotNone(
results, self._fail_msg("Should tell users CUDA", output)
)
else:
results = re.search("CUDA mode", output)
self.assertIsNone(
results, self._fail_msg("Should not tell users about CUDA", output)
)
@unittest.skipIf(HAS_CUDA, "CPU-only test")
def test_bottleneck_cpu_only(self):
rc, out, err = self._run_bottleneck("bottleneck_test/test.py")
self.assertEqual(rc, 0, msg=f"Run failed with\n{err}")
self._check_run_args()
self._check_environment_summary(out)
self._check_autograd_summary(out)
self._check_cprof_summary(out)
self._check_cuda(out)
@unittest.skipIf(not HAS_CUDA, "No CUDA")
def test_bottleneck_cuda(self):
rc, out, err = self._run_bottleneck("bottleneck_test/test_cuda.py")
self.assertEqual(rc, 0, msg=f"Run failed with\n{err}")
self._check_run_args()
self._check_environment_summary(out)
self._check_autograd_summary(out)
self._check_cprof_summary(out)
self._check_cuda(out)
from torch.utils.collect_env import get_pretty_env_info

View File

@ -73,7 +73,6 @@ TESTS = discover_tests(
cpp_tests_dir=CPP_TESTS_DIR,
blocklisted_patterns=[
"ao",
"bottleneck_test",
"custom_backend",
"custom_operator",
"fx", # executed by test_fx.py

View File

@ -1,229 +0,0 @@
# mypy: allow-untyped-defs
import argparse
import cProfile
import pstats
import sys
import os
import torch
from torch.autograd import profiler
from torch.utils.collect_env import get_env_info
def redirect_argv(new_argv):
sys.argv[:] = new_argv[:]
def compiled_with_cuda(sysinfo):
if sysinfo.cuda_compiled_version:
return f'compiled w/ CUDA {sysinfo.cuda_compiled_version}'
return 'not compiled w/ CUDA'
env_summary = """
--------------------------------------------------------------------------------
Environment Summary
--------------------------------------------------------------------------------
PyTorch {pytorch_version}{debug_str} {cuda_compiled}
Running with Python {py_version} and {cuda_runtime}
`{pip_version} list` truncated output:
{pip_list_output}
""".strip()
def run_env_analysis():
print('Running environment analysis...')
info = get_env_info()
result: dict[str, str] = {}
debug_str = ''
if info.is_debug_build:
debug_str = ' DEBUG'
cuda_avail = ''
if info.is_cuda_available:
cuda = info.cuda_runtime_version
if cuda is not None:
cuda_avail = 'CUDA ' + cuda
else:
cuda = 'CUDA unavailable'
pip_version = info.pip_version
pip_list_output = info.pip_packages
if pip_list_output is None:
pip_list_output = 'Unable to fetch'
result = {
'debug_str': debug_str,
'pytorch_version': info.torch_version,
'cuda_compiled': compiled_with_cuda(info),
'py_version': f'{sys.version_info[0]}.{sys.version_info[1]}',
'cuda_runtime': cuda_avail,
'pip_version': pip_version,
'pip_list_output': pip_list_output,
}
return env_summary.format(**result)
def run_cprofile(code, globs, launch_blocking=False):
print('Running your script with cProfile')
prof = cProfile.Profile()
prof.enable()
exec(code, globs, None)
prof.disable()
return prof
cprof_summary = """
--------------------------------------------------------------------------------
cProfile output
--------------------------------------------------------------------------------
""".strip()
def print_cprofile_summary(prof, sortby='tottime', topk=15):
print(cprof_summary)
cprofile_stats = pstats.Stats(prof).sort_stats(sortby)
cprofile_stats.print_stats(topk)
def run_autograd_prof(code, globs):
def run_prof(use_cuda=False):
with profiler.profile(use_cuda=use_cuda) as prof:
exec(code, globs, None)
return prof
print('Running your script with the autograd profiler...')
result = [run_prof(use_cuda=False)]
if torch.cuda.is_available():
result.append(run_prof(use_cuda=True))
else:
result.append(None)
return result
autograd_prof_summary = """
--------------------------------------------------------------------------------
autograd profiler output ({mode} mode)
--------------------------------------------------------------------------------
{description}
{cuda_warning}
{output}
""".strip()
def print_autograd_prof_summary(prof, mode, sortby='cpu_time', topk=15):
valid_sortby = ['cpu_time', 'cuda_time', 'cpu_time_total', 'cuda_time_total', 'count']
if sortby not in valid_sortby:
warn = ('WARNING: invalid sorting option for autograd profiler results: {}\n'
'Expected `cpu_time`, `cpu_time_total`, or `count`. '
'Defaulting to `cpu_time`.')
print(warn.format(sortby))
sortby = 'cpu_time'
if mode == 'CUDA':
cuda_warning = ('\n\tBecause the autograd profiler uses the CUDA event API,\n'
'\tthe CUDA time column reports approximately max(cuda_time, cpu_time).\n'
'\tPlease ignore this output if your code does not use CUDA.\n')
else:
cuda_warning = ''
sorted_events = sorted(prof.function_events,
key=lambda x: getattr(x, sortby), reverse=True)
topk_events = sorted_events[:topk]
result = {
'mode': mode,
'description': f'top {topk} events sorted by {sortby}',
'output': torch.autograd.profiler_util._build_table(topk_events),
'cuda_warning': cuda_warning
}
print(autograd_prof_summary.format(**result))
descript = """
`bottleneck` is a tool that can be used as an initial step for debugging
bottlenecks in your program.
It summarizes runs of your script with the Python profiler and PyTorch\'s
autograd profiler. Because your script will be profiled, please ensure that it
exits in a finite amount of time.
For more complicated uses of the profilers, please see
https://docs.python.org/3/library/profile.html and
https://pytorch.org/docs/main/autograd.html#profiler for more information.
""".strip()
def parse_args():
parser = argparse.ArgumentParser(description=descript)
parser.add_argument('scriptfile', type=str,
help='Path to the script to be run. '
'Usually run with `python path/to/script`.')
parser.add_argument('args', type=str, nargs=argparse.REMAINDER,
help='Command-line arguments to be passed to the script.')
return parser.parse_args()
def cpu_time_total(autograd_prof):
return sum(event.cpu_time_total for event in autograd_prof.function_events)
def main():
args = parse_args()
# Customizable constants.
scriptfile = args.scriptfile
scriptargs = [] if args.args is None else args.args
scriptargs.insert(0, scriptfile)
cprofile_sortby = 'tottime'
cprofile_topk = 15
autograd_prof_sortby = 'cpu_time_total'
autograd_prof_topk = 15
redirect_argv(scriptargs)
sys.path.insert(0, os.path.dirname(scriptfile))
with open(scriptfile, 'rb') as stream:
code = compile(stream.read(), scriptfile, 'exec')
globs = {
'__file__': scriptfile,
'__name__': '__main__',
'__package__': None,
'__cached__': None,
}
print(descript)
env_summary = run_env_analysis()
if torch.cuda.is_available():
torch.cuda.init()
cprofile_prof = run_cprofile(code, globs)
autograd_prof_cpu, autograd_prof_cuda = run_autograd_prof(code, globs)
print(env_summary)
print_cprofile_summary(cprofile_prof, cprofile_sortby, cprofile_topk)
if not torch.cuda.is_available():
print_autograd_prof_summary(autograd_prof_cpu, 'CPU', autograd_prof_sortby, autograd_prof_topk)
return
# Print both the result of the CPU-mode and CUDA-mode autograd profilers
# if their execution times are very different.
cuda_prof_exec_time = cpu_time_total(autograd_prof_cuda)
if len(autograd_prof_cpu.function_events) > 0:
cpu_prof_exec_time = cpu_time_total(autograd_prof_cpu)
pct_diff = (cuda_prof_exec_time - cpu_prof_exec_time) / cuda_prof_exec_time
if abs(pct_diff) > 0.05:
print_autograd_prof_summary(autograd_prof_cpu, 'CPU', autograd_prof_sortby, autograd_prof_topk)
print_autograd_prof_summary(autograd_prof_cuda, 'CUDA', autograd_prof_sortby, autograd_prof_topk)
if __name__ == '__main__':
main()