mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
[ROCm] replace ROCmLoops.cuh with hipified CUDALoops.cuh (#120101)
The intent of this change was to minimize code differences between CUDA and ROCm while maintaining or improving performance. Verified new performance using pytorch/benchmarks/operator_benchmark. ``` python -u -m pt.unary_test --tag-filter all --device cuda python -u -m pt.binary_test --tag-filter all --device cuda ``` On MI200 this improved performance on average 3%. Pull Request resolved: https://github.com/pytorch/pytorch/pull/120101 Approved by: https://github.com/albanD
This commit is contained in:
parent
77692736d1
commit
c11bd724fe
|
|
@ -302,6 +302,20 @@ void gpu_kernel_impl(TensorIteratorBase& iter, const func_t& f) {
|
|||
bool contiguous = iter.is_contiguous();
|
||||
|
||||
if (contiguous) {
|
||||
#ifdef USE_ROCM
|
||||
at::detail::Array<ScalarType, ntensors> dtypes;
|
||||
auto inner_strides = iter.get_inner_strides();
|
||||
at::detail::Array<int, ntensors> strides;
|
||||
for (int i = 0; i < ntensors; i++) {
|
||||
dtypes[i] = iter.dtype(i);
|
||||
strides[i] = inner_strides[i];
|
||||
}
|
||||
launch_legacy_kernel<512, 1>(numel, [=]GPU_LAMBDA(int idx) {
|
||||
void* out = data[0] + strides[0] * idx;
|
||||
arg0_t result = invoke(f, &data.data[1], &strides.data[1], &dtypes.data[1], idx);
|
||||
c10::cast_and_store<arg0_t>(dtypes[0], out, result);
|
||||
});
|
||||
#else
|
||||
auto loader = memory::LoadWithCast<traits::arity>(iter);
|
||||
auto storer = memory::StoreWithCast<1>(iter);
|
||||
auto input_offset_calculator = TrivialOffsetCalculator<traits::arity>();
|
||||
|
|
@ -314,6 +328,7 @@ void gpu_kernel_impl(TensorIteratorBase& iter, const func_t& f) {
|
|||
output_offset_calculator,
|
||||
loader,
|
||||
storer);
|
||||
#endif
|
||||
} else {
|
||||
at::detail::Array<ScalarType, ntensors> dtypes;
|
||||
for (int i = 0; i < ntensors; i++) {
|
||||
|
|
@ -323,8 +338,7 @@ void gpu_kernel_impl(TensorIteratorBase& iter, const func_t& f) {
|
|||
launch_legacy_kernel<128, 4>(numel, [=] GPU_LAMBDA(int idx) {
|
||||
auto offsets = offset_calc.get(idx);
|
||||
void* out = data[0] + offsets[0];
|
||||
arg0_t result =
|
||||
invoke(f, &data.data[1], &offsets.data[1], &dtypes.data[1], 1);
|
||||
arg0_t result = invoke(f, &data.data[1], &offsets.data[1], &dtypes.data[1], 1);
|
||||
c10::cast_and_store<arg0_t>(dtypes[0], out, result);
|
||||
});
|
||||
}
|
||||
|
|
|
|||
|
|
@ -68,17 +68,7 @@ __device__ inline void elementwise_kernel_helper(func_t f, policy_t policy) {
|
|||
|
||||
}} // namespace at::native
|
||||
|
||||
// Note:
|
||||
// CUDA and ROCm get diverged in this PR:
|
||||
// https://github.com/pytorch/pytorch/pull/32383
|
||||
// Because for some reason trying to enable vectorized
|
||||
// memory access introduce regression on ROCm.
|
||||
|
||||
#if !defined(USE_ROCM)
|
||||
#include <ATen/native/cuda/CUDALoops.cuh>
|
||||
#else
|
||||
#include <ATen/native/cuda/ROCmLoops.cuh>
|
||||
#endif
|
||||
#include <ATen/native/cuda/CUDALoops.cuh>
|
||||
|
||||
namespace at:: native {
|
||||
|
||||
|
|
|
|||
|
|
@ -109,7 +109,7 @@ struct LoadWithCast {
|
|||
size_array_t element_sizes;
|
||||
|
||||
LoadWithCast(const TensorIteratorBase& iter) {
|
||||
assert(iter.ninputs() == N);
|
||||
CUDA_KERNEL_ASSERT(iter.ninputs() == N);
|
||||
#pragma unroll
|
||||
for (auto i = 0; i < N; ++i) {
|
||||
this->dtypes[i] = iter.dtype(i + iter.noutputs());
|
||||
|
|
@ -140,7 +140,7 @@ struct StoreWithCast {
|
|||
size_array_t element_sizes;
|
||||
|
||||
StoreWithCast(const TensorIteratorBase& iter) {
|
||||
assert(iter.noutputs() == N);
|
||||
CUDA_KERNEL_ASSERT(iter.noutputs() == N);
|
||||
#pragma unroll
|
||||
for (auto i = 0; i < N; ++i) {
|
||||
this->dtypes[i] = iter.dtype(i);
|
||||
|
|
|
|||
|
|
@ -1,391 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
// This file provides two functions to help write GPU elementwise kernels:
|
||||
//
|
||||
// gpu_kernel(TensorIterator iter, <lambda>)
|
||||
// gpu_kernel_with_scalars(TensorIterator iter, <lambda>)
|
||||
//
|
||||
// The gpu_kernel_with_scalars generates specializations that support a
|
||||
// single scalar CPU argument, such as from `cuda_tensor + 5`. The CPU scalar
|
||||
// is lifted to a kernel parameter instead of copying to device memory.
|
||||
// This should be used in conjunction with TensorIterator::allow_cpu_scalars_,
|
||||
// which is the default for TensorIterator::binary_op. Otherwise, all inputs
|
||||
// and the output must be on the GPU.
|
||||
//
|
||||
// For example, to write a reciprocal kernel for GPU float Tensors:
|
||||
//
|
||||
// gpu_kernel(iter, []GPU_LAMBDA(float a) {
|
||||
// return 1.0f / a;
|
||||
// });
|
||||
//
|
||||
// To write a multiplication kernel for GPU float Tensors where one argument
|
||||
// may be a CPU scalar:
|
||||
//
|
||||
// gpu_kernel_with_scalars(iter, []GPU_LAMBDA(float a, float b) {
|
||||
// return a * b;
|
||||
// });
|
||||
//
|
||||
// See BinaryOpsKernel.cu for the complete implementation
|
||||
//
|
||||
|
||||
#include <type_traits>
|
||||
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <ATen/core/Array.h>
|
||||
#include <ATen/cuda/detail/OffsetCalculator.cuh>
|
||||
#include <ATen/detail/FunctionTraits.h>
|
||||
#include <ATen/native/TensorIterator.h>
|
||||
#include <c10/macros/Macros.h>
|
||||
#include <c10/core/ScalarType.h>
|
||||
#include <c10/core/DynamicCast.h>
|
||||
|
||||
|
||||
#ifdef __NVCC__
|
||||
#define ASSERT_HOST_DEVICE_LAMBDA(type) \
|
||||
static_assert(__nv_is_extended_host_device_lambda_closure_type(type), \
|
||||
#type " must be a __host__ __device__ lambda")
|
||||
#else
|
||||
#define ASSERT_HOST_DEVICE_LAMBDA(type)
|
||||
#endif
|
||||
|
||||
static constexpr int launch_size_1d = 512;
|
||||
static constexpr int launch_size_nd = 128;
|
||||
static constexpr int launch_bound2 = 4;
|
||||
|
||||
|
||||
namespace at { namespace native {
|
||||
|
||||
// See [NOTE: Complex Operator Unification]
|
||||
// std::complex and thrust::complex don't work with some !needs_dynamic_casting optimizations.
|
||||
// They always currently map to !needs_dynamic_casting even though we sometimes rely on the ability
|
||||
// to reinterpret_cast between these representations.
|
||||
// In order to separate these concerns, we have a check for non-c10 complex separately.
|
||||
template<typename func_t, int nargs=function_traits<func_t>::arity>
|
||||
struct uses_non_c10_complex {
|
||||
constexpr static bool check() {
|
||||
using traits = function_traits<func_t>;
|
||||
using type = typename traits::template arg<nargs - 1>::type;
|
||||
constexpr bool non_c10_complex =
|
||||
std::is_same<std::complex<float>, type>::value
|
||||
|| std::is_same<std::complex<double>, type>::value
|
||||
|| std::is_same<thrust::complex<float>, type>::value
|
||||
|| std::is_same<thrust::complex<double>, type>::value;
|
||||
|
||||
if constexpr (non_c10_complex) {
|
||||
return true;
|
||||
} else {
|
||||
return uses_non_c10_complex<func_t, nargs - 1>::check();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename func_t>
|
||||
struct uses_non_c10_complex<func_t, 0> {
|
||||
constexpr static bool check() {
|
||||
using traits = function_traits<func_t>;
|
||||
using type = typename traits::result_type;
|
||||
constexpr bool non_c10_complex =
|
||||
std::is_same<std::complex<float>, type>::value
|
||||
|| std::is_same<std::complex<double>, type>::value
|
||||
|| std::is_same<thrust::complex<float>, type>::value
|
||||
|| std::is_same<thrust::complex<double>, type>::value;
|
||||
|
||||
return non_c10_complex;
|
||||
}
|
||||
};
|
||||
|
||||
// NOTE: @zasdfgbnm is currently working on rewriting the gpu loops.
|
||||
// Some of the old codes has been moved to namespace legacy, and
|
||||
// new codes will be put into namespace modern. These two namespaces
|
||||
// will coexists for a while until the rewrite is done. Once the rewrite
|
||||
// is done, we will remove the legacy and modern namespace and everything
|
||||
// will be in at::native directly.
|
||||
namespace legacy {
|
||||
|
||||
template<int nt, int vt, typename func_t>
|
||||
C10_LAUNCH_BOUNDS_2(nt, launch_bound2)
|
||||
__global__ void elementwise_kernel(int N, func_t f) {
|
||||
int tid = threadIdx.x;
|
||||
int nv = nt * vt;
|
||||
int idx = nv * blockIdx.x + tid;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < vt; i++) {
|
||||
if (idx < N) {
|
||||
f(idx);
|
||||
idx += nt;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<int nt, int vt, typename func_t>
|
||||
static void launch_kernel(int64_t N, const func_t& f) {
|
||||
TORCH_INTERNAL_ASSERT(N >= 0 && N <= std::numeric_limits<int32_t>::max());
|
||||
if (N == 0) {
|
||||
return;
|
||||
}
|
||||
dim3 block(nt);
|
||||
dim3 grid((N + block.x * vt - 1) / (block.x * vt));
|
||||
auto stream = at::cuda::getCurrentCUDAStream();
|
||||
elementwise_kernel<nt, vt, func_t><<<grid, block, 0, stream>>>(N, f);
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
}
|
||||
|
||||
template <typename traits, typename func_t, typename index_t, size_t... INDEX>
|
||||
C10_HOST_DEVICE typename traits::result_type
|
||||
invoke_impl(const func_t &f, char *const C10_RESTRICT data[], const index_t strides[], int i,
|
||||
std::index_sequence<INDEX...>) {
|
||||
return f(c10::load<typename traits::template arg<INDEX>::type>(data[INDEX] + i * strides[INDEX])...);
|
||||
}
|
||||
|
||||
template <typename func_t, typename index_t, typename traits = function_traits<func_t>>
|
||||
C10_HOST_DEVICE typename traits::result_type
|
||||
invoke(const func_t &f, char *const C10_RESTRICT data[], const index_t strides[], int i) {
|
||||
using Indices = std::make_index_sequence<traits::arity>;
|
||||
return invoke_impl<traits>(f, data, strides, i, Indices{});
|
||||
}
|
||||
|
||||
template <typename traits, typename func_t, typename index_t, size_t... I>
|
||||
C10_HOST_DEVICE typename traits::result_type
|
||||
invoke_impl(const func_t &f, char *const C10_RESTRICT data[], const index_t strides[], const ScalarType dtypes[], int i,
|
||||
std::index_sequence<I...>) {
|
||||
return f(c10::fetch_and_cast<typename traits::template arg<I>::type>(dtypes[I], data[I] + i * strides[I])...);
|
||||
}
|
||||
|
||||
template <typename func_t, typename index_t, typename traits = function_traits<func_t>>
|
||||
C10_HOST_DEVICE typename traits::result_type
|
||||
invoke(const func_t &f, char *const C10_RESTRICT data[], const index_t strides[], const ScalarType dtypes[], int i) {
|
||||
using Indices = std::make_index_sequence<traits::arity>;
|
||||
return invoke_impl<traits>(f, data, strides, dtypes, i, Indices{});
|
||||
}
|
||||
|
||||
} // namespace legacy
|
||||
|
||||
// See the note for namespace legacy above.
|
||||
namespace modern {
|
||||
|
||||
namespace detail {
|
||||
|
||||
template <typename func_t, typename array_t, std::size_t... I>
|
||||
__device__ inline constexpr decltype(auto) invoke_with_array_impl(func_t f, array_t t, std::index_sequence<I...>)
|
||||
{
|
||||
return f(t[I]...);
|
||||
}
|
||||
template <typename func_t, typename array_t>
|
||||
__device__ inline constexpr decltype(auto) invoke_with_array(func_t f, array_t a) {
|
||||
constexpr auto arity = function_traits<func_t>::arity;
|
||||
return invoke_with_array_impl(f, a, std::make_index_sequence<arity>{});
|
||||
}
|
||||
|
||||
namespace arg_type {
|
||||
|
||||
// We need a way to compute the argument type of a function. But
|
||||
// for nullary function, it does not really have an argument type
|
||||
// in this case, we still need to return a valid type, but we don't
|
||||
// really care what type this is.
|
||||
|
||||
struct dont_care {};
|
||||
|
||||
template <typename func_t, std::size_t arity>
|
||||
struct arg_type_helper {
|
||||
using type = typename function_traits<func_t>::template arg<0>::type;
|
||||
};
|
||||
|
||||
template <typename func_t>
|
||||
struct arg_type_helper<func_t, 0> {
|
||||
using type = dont_care;
|
||||
};
|
||||
|
||||
template <typename func_t>
|
||||
using type = typename arg_type_helper<func_t, function_traits<func_t>::arity>::type;
|
||||
|
||||
} // namespace arg_type
|
||||
|
||||
template<typename func_t, int remaining=function_traits<func_t>::arity-1>
|
||||
struct has_same_arg_types {
|
||||
using traits = function_traits<func_t>;
|
||||
static constexpr bool value = std::is_same<
|
||||
typename traits::template arg<remaining>::type,
|
||||
typename traits::template arg<remaining-1>::type
|
||||
>::value && has_same_arg_types<func_t, remaining-1>::value;
|
||||
};
|
||||
|
||||
template<typename func_t>
|
||||
struct has_same_arg_types<func_t, 0> {
|
||||
static constexpr bool value = true;
|
||||
};
|
||||
|
||||
template<typename func_t>
|
||||
struct has_same_arg_types<func_t, -1> {
|
||||
static constexpr bool value = true;
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
|
||||
template<typename func_t, typename array_t>
|
||||
C10_LAUNCH_BOUNDS_1(num_threads())
|
||||
__global__ void elementwise_kernel(int N, func_t f, array_t data) {
|
||||
// Assumption:
|
||||
// 1. all arguments of `f` have the same type, which could be different from the return type of `f`
|
||||
// 2. all tensors are contiguous, that is: stride == sizeof(type) for all tensors
|
||||
|
||||
using traits = function_traits<func_t>;
|
||||
using return_t = typename traits::result_type;
|
||||
using arg_t = detail::arg_type::type<func_t>;
|
||||
constexpr int arity = traits::arity;
|
||||
|
||||
// We need to create array to hold all the arguments, for nullary `f`, this means array of size 0.
|
||||
// Unfortunately the compiler don't allow us to create array of 0 size, so for this case, we create
|
||||
// an array of size 1 and just don't use it.
|
||||
constexpr int nargs = traits::arity == 0 ? 1 : traits::arity;
|
||||
|
||||
int tid = threadIdx.x;
|
||||
int idx = block_work_size() * blockIdx.x + tid;
|
||||
|
||||
// compute base pointers
|
||||
return_t *result_base = reinterpret_cast<return_t *>(data[0]) + idx;
|
||||
arg_t *args_base[nargs];
|
||||
#pragma unroll
|
||||
for (int i = 0; i < arity; i++) {
|
||||
args_base[i] = reinterpret_cast<arg_t *>(data[i + 1]) + idx;
|
||||
}
|
||||
|
||||
// fetch data
|
||||
return_t results[thread_work_size()];
|
||||
arg_t args[thread_work_size()][nargs];
|
||||
#pragma unroll
|
||||
for (int i = 0; i < thread_work_size(); i++) {
|
||||
if (idx + num_threads() * i < N) {
|
||||
#pragma unroll
|
||||
for (int j = 0; j < arity; j++) {
|
||||
args[i][j] = c10::load(args_base[j] + i * num_threads());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// compute
|
||||
#pragma unroll
|
||||
for (int i = 0; i < thread_work_size(); i++) {
|
||||
if (idx + num_threads() * i < N) {
|
||||
results[i] = detail::invoke_with_array<func_t, arg_t[nargs]>(f, args[i]);
|
||||
}
|
||||
}
|
||||
|
||||
// store data
|
||||
#pragma unroll
|
||||
for (int i = 0; i < thread_work_size(); i++) {
|
||||
if (idx + num_threads() * i < N) {
|
||||
*(result_base + i * num_threads()) = results[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO (@zasdfgbnm): this function assume trivial 1d and no dynamic casting
|
||||
template<typename func_t, typename array_t, std::enable_if_t<detail::has_same_arg_types<func_t>::value, int> = 0>
|
||||
static void launch_kernel(int64_t N, const func_t& f, array_t data) {
|
||||
TORCH_INTERNAL_ASSERT(N >= 0 && N <= std::numeric_limits<int32_t>::max());
|
||||
if (N == 0) {
|
||||
return;
|
||||
}
|
||||
int64_t grid = (N + block_work_size() - 1) / block_work_size();
|
||||
auto stream = at::cuda::getCurrentCUDAStream();
|
||||
elementwise_kernel<func_t, array_t><<<grid, num_threads(), 0, stream>>>(N, f, data);
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
}
|
||||
|
||||
template<typename func_t, typename array_t, std::enable_if_t<!detail::has_same_arg_types<func_t>::value, int> = 0>
|
||||
static void launch_kernel(int64_t N, const func_t& f, array_t data) {}
|
||||
|
||||
} // namespace modern
|
||||
|
||||
|
||||
template <typename func_t>
|
||||
void gpu_kernel_impl_nocast(TensorIteratorBase& iter, const func_t& f) {
|
||||
using traits = function_traits<func_t>;
|
||||
using arg0_t = typename traits::result_type;
|
||||
constexpr int ntensors = traits::arity + 1;
|
||||
|
||||
TORCH_INTERNAL_ASSERT(iter.can_use_32bit_indexing());
|
||||
TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity);
|
||||
TORCH_INTERNAL_ASSERT(iter.noutputs() == 1);
|
||||
TORCH_INTERNAL_ASSERT(!needs_dynamic_casting<func_t>::check(iter));
|
||||
|
||||
at::detail::Array<char*, ntensors> data;
|
||||
for (int i = 0; i < ntensors; i++) {
|
||||
data[i] = (char*)iter.data_ptr(i);
|
||||
}
|
||||
|
||||
int64_t numel = iter.numel();
|
||||
|
||||
auto offset_calc = ::make_offset_calculator<traits::arity + 1>(iter);
|
||||
constexpr int unroll_factor = sizeof(arg0_t) >= 4 ? 2 : 4;
|
||||
legacy::launch_kernel<128, unroll_factor>(numel, [=] GPU_LAMBDA(int idx) {
|
||||
auto offsets = offset_calc.get(idx);
|
||||
arg0_t* out = (arg0_t*)(data[0] + offsets[0]);
|
||||
*out = legacy::invoke(f, &data.data[1], &offsets.data[1], 1);
|
||||
});
|
||||
}
|
||||
|
||||
template <typename func_t>
|
||||
void gpu_kernel_impl(TensorIteratorBase& iter, const func_t& f) {
|
||||
using traits = function_traits<func_t>;
|
||||
using arg0_t = typename traits::result_type;
|
||||
constexpr int ntensors = traits::arity + 1;
|
||||
|
||||
TORCH_INTERNAL_ASSERT(iter.can_use_32bit_indexing());
|
||||
TORCH_INTERNAL_ASSERT(iter.ntensors() == traits::arity + 1);
|
||||
bool non_c10_complex = uses_non_c10_complex<func_t>::check();
|
||||
|
||||
at::detail::Array<char*, ntensors> data;
|
||||
for (int i = 0; i < ntensors; i++) {
|
||||
data[i] = (char*)iter.data_ptr(i);
|
||||
}
|
||||
|
||||
at::detail::Array<ScalarType, ntensors> dtypes;
|
||||
for (int i = 0; i < ntensors; i++) {
|
||||
dtypes[i] = iter.dtype(i);
|
||||
}
|
||||
|
||||
int64_t numel = iter.numel();
|
||||
if (iter.is_trivial_1d()) {
|
||||
auto inner_strides = iter.get_inner_strides();
|
||||
at::detail::Array<int, ntensors> strides;
|
||||
for (int i = 0; i < ntensors; i++) {
|
||||
strides[i] = inner_strides[i];
|
||||
}
|
||||
|
||||
// TODO: can non_c10_complex go through the other path? Need to verify.
|
||||
if (needs_dynamic_casting<func_t>::check(iter) || non_c10_complex) {
|
||||
legacy::launch_kernel<launch_size_1d, 1>(numel, [=]GPU_LAMBDA(int idx) {
|
||||
void* out = data[0] + strides[0] * idx;
|
||||
arg0_t result = legacy::invoke(f, &data.data[1], &strides.data[1], &dtypes.data[1], idx);
|
||||
c10::cast_and_store<arg0_t>(dtypes[0], out, result);
|
||||
});
|
||||
} else if (iter.has_contiguous_first_dim() && modern::detail::has_same_arg_types<func_t>::value) {
|
||||
modern::launch_kernel(numel, f, data);
|
||||
} else {
|
||||
legacy::launch_kernel<launch_size_1d, 1>(numel, [=]GPU_LAMBDA(int idx) {
|
||||
arg0_t* out = (arg0_t*)(data[0] + strides[0] * idx);
|
||||
*out = legacy::invoke(f, &data.data[1], &strides.data[1], idx);
|
||||
});
|
||||
}
|
||||
} else {
|
||||
auto offset_calc = ::make_offset_calculator<traits::arity + 1>(iter);
|
||||
// TODO: can non_c10_complex go through the other path? Need to verify.
|
||||
if (needs_dynamic_casting<func_t>::check(iter) || non_c10_complex) {
|
||||
legacy::launch_kernel<launch_size_nd, launch_bound2>(numel, [=]GPU_LAMBDA(int idx) {
|
||||
auto offsets = offset_calc.get(idx);
|
||||
void* out = data[0] + offsets[0];
|
||||
arg0_t result = legacy::invoke(f, &data.data[1], &offsets.data[1], &dtypes.data[1], 1);
|
||||
c10::cast_and_store<arg0_t>(dtypes[0], out, result);
|
||||
});
|
||||
} else {
|
||||
legacy::launch_kernel<launch_size_nd, launch_bound2>(numel, [=]GPU_LAMBDA(int idx) {
|
||||
auto offsets = offset_calc.get(idx);
|
||||
arg0_t* out = (arg0_t*)(data[0] + offsets[0]);
|
||||
*out = legacy::invoke(f, &data.data[1], &offsets.data[1], 1);
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}} // namespace at::native
|
||||
|
|
@ -78,17 +78,10 @@ using negation = std::negation<B>;
|
|||
template <class T>
|
||||
using void_t = std::void_t<T>;
|
||||
|
||||
#if defined(USE_ROCM)
|
||||
// rocm doesn't like the C10_HOST_DEVICE
|
||||
#define CUDA_HOST_DEVICE
|
||||
#else
|
||||
#define CUDA_HOST_DEVICE C10_HOST_DEVICE
|
||||
#endif
|
||||
|
||||
#if defined(__cpp_lib_apply) && !defined(__CUDA_ARCH__)
|
||||
#if defined(__cpp_lib_apply) && !defined(__CUDA_ARCH__) && !defined(__HIP__)
|
||||
|
||||
template <class F, class Tuple>
|
||||
CUDA_HOST_DEVICE inline constexpr decltype(auto) apply(F&& f, Tuple&& t) {
|
||||
C10_HOST_DEVICE inline constexpr decltype(auto) apply(F&& f, Tuple&& t) {
|
||||
return std::apply(std::forward<F>(f), std::forward<Tuple>(t));
|
||||
}
|
||||
|
||||
|
|
@ -109,7 +102,7 @@ C10_HOST_DEVICE constexpr auto apply_impl(
|
|||
std::index_sequence<INDEX...>)
|
||||
#else
|
||||
// GCC/Clang need the decltype() return type
|
||||
CUDA_HOST_DEVICE constexpr decltype(auto) apply_impl(
|
||||
C10_HOST_DEVICE constexpr decltype(auto) apply_impl(
|
||||
F&& f,
|
||||
Tuple&& t,
|
||||
std::index_sequence<INDEX...>)
|
||||
|
|
@ -120,7 +113,7 @@ CUDA_HOST_DEVICE constexpr decltype(auto) apply_impl(
|
|||
} // namespace detail
|
||||
|
||||
template <class F, class Tuple>
|
||||
CUDA_HOST_DEVICE constexpr decltype(auto) apply(F&& f, Tuple&& t) {
|
||||
C10_HOST_DEVICE constexpr decltype(auto) apply(F&& f, Tuple&& t) {
|
||||
return detail::apply_impl(
|
||||
std::forward<F>(f),
|
||||
std::forward<Tuple>(t),
|
||||
|
|
@ -130,8 +123,6 @@ CUDA_HOST_DEVICE constexpr decltype(auto) apply(F&& f, Tuple&& t) {
|
|||
|
||||
#endif
|
||||
|
||||
#undef CUDA_HOST_DEVICE
|
||||
|
||||
template <typename Functor, typename... Args>
|
||||
std::enable_if_t<
|
||||
std::is_member_pointer_v<std::decay_t<Functor>>,
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user