[export] Exempt autograd ops for predispatch export (#116527)

Summary:
We intend to preserve autograd ops for predispatch export. Therefore, we
need to exempt the autograd ops in some places, e.g. verifier and
proxy_tensor.py.

Test Plan:
python test/export/test_export.py -k test_predispatch_export_with_autograd_op
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116527
Approved by: https://github.com/tugsbayasgalan
ghstack dependencies: #116339
This commit is contained in:
chundian 2024-01-05 11:32:17 -08:00 committed by PyTorch MergeBot
parent 9431798521
commit af2ded23eb
4 changed files with 58 additions and 1 deletions

View File

@ -1583,6 +1583,18 @@ def forward(self, arg_0):
):
_ = Constraint()
def test_predispatch_export_with_autograd_op(self):
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
with torch.enable_grad():
return x + x
with torch.no_grad():
ep = _export(Foo(), (torch.ones(10),), pre_dispatch=True)
def test_train_eval_on_exported_preautograd_module(self):
class Foo(torch.nn.Module):
def __init__(self):

View File

@ -61,6 +61,43 @@ class TestSafeguard(TestCase):
):
export(f3, (a,))
def test_global_autograd_exempt_predispatch(self):
def f1(a):
with torch.no_grad():
b = a + a
return b
def f2(a):
with torch.enable_grad():
b = a + a
return b
def f3(a):
with torch.set_grad_enabled(False):
b = a + a
return b
def f4(a):
with torch.set_grad_enabled(True):
b = a + a
return b
a = torch.randn(10)
from torch.export._trace import _export
with torch.no_grad():
_export(f1, (a,), pre_dispatch=True)
_export(f2, (a,), pre_dispatch=True)
_export(f3, (a,), pre_dispatch=True)
_export(f4, (a,), pre_dispatch=True)
with torch.enable_grad():
_export(f1, (a,), pre_dispatch=True)
_export(f2, (a,), pre_dispatch=True)
_export(f3, (a,), pre_dispatch=True)
_export(f4, (a,), pre_dispatch=True)
def test_tensor_autograd(self):
# dynamo errors when Tensor.requires_grad_ change the autograd state
def f1(a):

View File

@ -173,6 +173,8 @@ class Verifier(metaclass=_VerifierMeta):
torch.sym_min,
torch.sym_not,
torch.sym_sqrt,
# Predispatch export is able to contain autograd ops.
torch._C._set_grad_enabled
)
if not isinstance(op, _allowed_op_types()):

View File

@ -569,7 +569,13 @@ class PreDispatchTorchFunctionMode(TorchFunctionMode):
def __torch_function__(self, func, types, args=(), kwargs=None):
kwargs = kwargs or {}
if func in _side_effectful_need_to_be_preserved_pre_dispatch:
return self.tracer.create_node("call_function", func, args, {})
# It's for passing the export verifier which needs to verify the meta['val']
# TODO(chundian): we should systematically couple it with expoert verifier,
# instead of hardcoding it here.
node = self.tracer.create_node("call_function", func, args, {})
if func is torch._C._set_grad_enabled:
node.meta['val'] = None
return node
# Don't actually run the function! We just want to trace the calls
# into a graph. We don't actualy want to change global autograd state.
return func(*args, **kwargs)