expanded weights without fast rules (#70140)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70140

[Design Doc for Expanded Weights](https://gist.github.com/samdow/fa0a164fec7963f93ff45284989cfc55) <-- gives an overview of the design for Expanded Weights

Introduces the ExpandedWeights mechanism and user-facing API without any custom implemented, faster rules.
 - User facing API is in `_stateless.py` (with documentation)
 - Testing is in test_expanded_weights
 - The rest is the implementation of the erroring fallback + the mechanism for being able to register faster per sample grad rules. Only linear is implemented here, but they are all implemented in #70141

Test Plan: Imported from OSS

Reviewed By: mikaylagawarecki

Differential Revision: D34350950

Pulled By: samdow

fbshipit-source-id: 69c664b0bc3dff6951358d79d7e5d94882f7aef2
This commit is contained in:
Samantha Andow 2022-02-22 12:23:04 -08:00 committed by Facebook GitHub Bot
parent 999cb73e93
commit ae1620d3b6
7 changed files with 649 additions and 0 deletions

View File

@ -0,0 +1,387 @@
# Owner(s): ["module: nn"]
from functools import partial
from itertools import product
import unittest
import torch
import torch.nn as nn
from torch.nn.utils._per_sample_grad import call_for_per_sample_grads
from torch.testing._internal.common_device_type import OpDTypes, instantiate_device_type_tests, ops
from torch.testing._internal.common_nn import TestBase, module_tests, new_module_tests
from torch.testing._internal.common_utils import TestCase, freeze_rng_state, make_tensor, run_tests
from torch.testing._internal.common_methods_invocations import SampleInput, op_db
from torch.nn.utils._expanded_weights import ExpandedWeight
from torch.nn.utils._expanded_weights.expanded_weights_utils import forward_helper, set_grad_sample_if_exists, \
unpack_expanded_weight_or_tensor, sum_over_all_but_batch_and_last_n, standard_kwargs
class TestContext:
pass
class TestExpandedWeightHelperFunction(TestCase):
def test_forward_helper(self, device):
input = torch.randn(3, 4, device=device)
weight = torch.randn(5, 4, device=device)
bias = torch.randn(5, device=device)
for (weight_batched, bias_batched) in product([True, False], [True, False]):
maybe_batched_weight = ExpandedWeight(weight.clone().requires_grad_(), 3) if weight_batched else weight
maybe_batched_bias = ExpandedWeight(bias.clone().requires_grad_(), 3) if bias_batched else bias
args = (input, maybe_batched_weight, maybe_batched_bias)
expanded_args, expanded_kwargs = standard_kwargs(('bias',), args)
res = forward_helper(nn.functional.linear, expanded_args, expanded_kwargs)
expected = nn.functional.linear(input, weight, bias)
self.assertEqual(res, expected)
self.assertEqual(len(expanded_args), 2)
assert expanded_args[0] is args[0] # avoids property checks in assertEquals
assert expanded_args[1] is args[1] # avoids property checks in assertEquals
self.assertEqual(len(expanded_kwargs), 1)
assert expanded_kwargs['bias'] is args[2] # avoids property checks in assertEquals
def test_forward_helper_failure_args(self, device):
weight = torch.randn(5, 4, device=device)
bias = torch.randn(5, device=device)
with self.assertRaisesRegex(RuntimeError, r"do not support inputs that are also ExpandedWeights."):
input = ExpandedWeight(torch.randn(3, 4, requires_grad=True), 3)
expanded_args, expanded_kwargs = standard_kwargs(('bias',), (input, weight, bias))
forward_helper(nn.functional.linear, expanded_args, expanded_kwargs)
with self.assertRaisesRegex(RuntimeError, r"requires a Tensor as the first input"):
expanded_args, expanded_kwargs = standard_kwargs(('bias',), (3, weight, bias))
forward_helper(nn.functional.linear, expanded_args, expanded_kwargs)
with self.assertRaisesRegex(RuntimeError, r"requires a batch dimension but got an input of size 0"):
expanded_args, expanded_kwargs = standard_kwargs(('bias',), (torch.tensor(3), weight, bias))
forward_helper(nn.functional.linear, expanded_args, expanded_kwargs)
with self.assertRaisesRegex(RuntimeError, r"0 is not a valid batch size for Expanded Weights"):
expanded_args, expanded_kwargs = standard_kwargs(('bias',), (torch.randn(0, 1, 2), weight, bias))
forward_helper(nn.functional.linear, expanded_args, expanded_kwargs)
input = torch.randn(3, 4)
for (weight_batched, bias_batched) in product([True, False], [True, False]):
if not weight_batched and not bias_batched:
continue
maybe_batched_weight = ExpandedWeight(weight.clone().requires_grad_(), 4) if weight_batched else weight
maybe_batched_bias = ExpandedWeight(bias.clone().requires_grad_(), 4) if bias_batched else bias
with self.assertRaisesRegex(RuntimeError, r"Expected ExpandedWeights to have batch size matching input"):
expanded_args, expanded_kwargs = standard_kwargs(('bias',), (input, maybe_batched_weight, maybe_batched_bias))
forward_helper(nn.functional.linear, expanded_args, expanded_kwargs)
def test_set_grad_sample_if_exists(self, device):
def test_fn(_):
return True
orig_weight = torch.randn(4, device=device, requires_grad=True)
expanded_weight = ExpandedWeight(orig_weight, 3)
set_grad_sample_if_exists(expanded_weight, test_fn)
self.assertTrue(hasattr(orig_weight, 'grad_sample'))
self.assertTrue(orig_weight.grad_sample)
basic_tensor = torch.randn(4, device=device)
set_grad_sample_if_exists(basic_tensor, test_fn)
self.assertFalse(hasattr(basic_tensor, 'grad_sample'))
non_tensor = 3
set_grad_sample_if_exists(non_tensor, test_fn)
self.assertFalse(hasattr(non_tensor, 'grad_sample'))
def test_set_grad_sample_if_exists_failure(self, device):
def test_fn(_):
return True
grad_tensor = torch.randn(4, requires_grad=True, device=device)
with self.assertRaisesRegex(RuntimeError, r"does not support a mixture of ExpandedWeight parameters and normal Parameters"):
set_grad_sample_if_exists(grad_tensor, test_fn)
def test_unpack_expanded_weight_or_tensor(self, device):
input = torch.randn(3, requires_grad=True, device=device)
self.assertEqual(input, unpack_expanded_weight_or_tensor(ExpandedWeight(input, 3)))
input.requires_grad_(False)
self.assertEqual(input, unpack_expanded_weight_or_tensor(input))
self.assertTrue(unpack_expanded_weight_or_tensor(4) is None)
def test_unpack_expanded_weight_or_tensor_with_custom_function(self, device):
input = torch.randn(3, requires_grad=True, device=device)
self.assertTrue(unpack_expanded_weight_or_tensor(ExpandedWeight(input, 3), lambda x: x is input))
input.requires_grad_(False)
self.assertTrue(unpack_expanded_weight_or_tensor(input, lambda x: x is input))
self.assertTrue(unpack_expanded_weight_or_tensor(4, lambda x: x is input) is None)
def test_unpack_expanded_weight_or_tensor_failure(self, device):
input = torch.randn(3, requires_grad=True, device=device)
with self.assertRaisesRegex(RuntimeError, r"does not support a mixture of ExpandedWeight parameters and normal Parameters"):
unpack_expanded_weight_or_tensor(input)
with self.assertRaisesRegex(RuntimeError, r"does not support a mixture of ExpandedWeight parameters and normal Parameters"):
unpack_expanded_weight_or_tensor(input, lambda x: x is input)
def test_sum_over_all_but_batch_and_last_n(self, device):
input = torch.randn(1, 2, 3, 4, 5, device=device)
res = sum_over_all_but_batch_and_last_n(input, 2)
expected = input.sum((1, 2))
self.assertEqual(res, expected)
res = sum_over_all_but_batch_and_last_n(input, 0)
expected = input.sum((1, 2, 3, 4))
self.assertEqual(res, expected)
res = sum_over_all_but_batch_and_last_n(input, 4)
self.assertEqual(res, input)
class TestExpandedWeightFunctional(TestCase):
@ops(filter(lambda op: op.supports_expanded_weight, op_db), dtypes=OpDTypes.supported, allowed_dtypes=(torch.double,))
def test_expanded_weight_per_sample_grad(self, device, dtype, op):
sample_inputs = op.sample_inputs(device, dtype, requires_grad=True)
for sample_input in supported_inputs(op, sample_inputs):
if op.name == "nn.functional.embedding": # embedding flips its argument order for autograd tests
sample_input = SampleInput(sample_input.args[0], args=(sample_input.input,), kwargs=sample_input.kwargs)
input = sample_input.input
args = sample_input.args
kwargs = sample_input.kwargs
batch_size = input.shape[0] if len(input.shape) > 1 else 1
# get per sample grads with ExpandedWeights objects
(ew_input, ew_args, ew_kwargs) = make_expanded_weight(sample_input, batch_size)
diff_input_list = (ew_input,) + tuple(ew_args) + tuple(ew_kwargs.values())
diff_input_list = [i for i in diff_input_list if is_diff_tensor(i)]
diff_input_list = [i.orig_weight if isinstance(i, ExpandedWeight) else i for i in diff_input_list]
if not diff_input_list:
continue
result = run_op(op, ew_input, *ew_args, **ew_kwargs)
result.sum().backward() # grad doesn't work with ExpandedWeight because it calls __torch_function__
expanded_weight_grad = tuple(i.grad_sample if hasattr(i, "grad_sample") else i.grad for i in diff_input_list)
# get per sample grads with for loop
func = partial(run_op, op)
per_sample_grad = for_loop_per_sample_grad(batch_size, input, func, *args, **kwargs)
# check equality
self.assertEqual(len(per_sample_grad), len(expanded_weight_grad))
for (result_grad, expected_grad) in zip(expanded_weight_grad, per_sample_grad):
if result_grad is None:
result_grad = torch.zeros_like(expected_grad)
assert torch.allclose(result_grad, expected_grad), f"Got {result_grad}, expected {expected_grad}"
@ops(filter(lambda op: op.supports_expanded_weight, op_db), dtypes=OpDTypes.supported, allowed_dtypes=(torch.double,))
def test_unsupported_expand_weights(self, device, dtype, op):
sample_inputs = op.sample_inputs(device, dtype, requires_grad=True)
unsupported_inputs = supported_inputs(op, sample_inputs, supported_inputs=False)
for sample_input in unsupported_inputs:
with self.assertRaisesRegex(RuntimeError, r"Expanded Weights"):
if op.name == "nn.functional.embedding": # embedding flips its argument order for autograd tests
sample_input = SampleInput(sample_input.args[0], args=(sample_input.input,), kwargs=sample_input.kwargs)
input = sample_input.input
batch_size = input.shape[0] if len(input.shape) > 1 else 1
# get per sample grads with ExpandedWeights objects
(ew_input, ew_args, ew_kwargs) = make_expanded_weight(sample_input, batch_size)
result = run_op(op, ew_input, *ew_args, **ew_kwargs)
diff_input_list = (ew_input,) + tuple(ew_args) + tuple(ew_kwargs.values())
diff_input_list = [i for i in diff_input_list if is_diff_tensor(i)]
diff_input_list = [i.orig_weight if isinstance(i, ExpandedWeight) else i for i in diff_input_list]
result.sum().backward() # grad doesn't work with ExpandedWeight because it calls __torch_function__
@ops(filter(lambda op: op.supports_expanded_weight, op_db), dtypes=OpDTypes.supported)
def test_expanded_weight_forward(self, device, dtype, op):
sample_inputs = op.sample_inputs(device, dtype)
for sample_input in supported_inputs(op, sample_inputs):
batch_size = sample_input.input.shape[0] if len(sample_input.input.shape) > 1 else 1
(ew_input, ew_args, ew_kwargs) = make_expanded_weight(sample_input, batch_size)
expanded_weight_result = op(ew_input, *ew_args, **ew_kwargs)
normal_result = op(sample_input.input, *sample_input.args, **sample_input.kwargs)
self.assertEqual(expanded_weight_result, normal_result)
def test_expanded_weight_error(self, device):
batch_size = 3
sample_input = make_tensor((batch_size, 4), device, torch.float32, requires_grad=True)
sample_weight = make_tensor((4), device, torch.float32, requires_grad=True)
with self.assertRaisesRegex(RuntimeError, r"Expanded Weights encountered but cannot handle function"):
torch.add(sample_input, ExpandedWeight(sample_weight, batch_size))
class TestExpandedWeightModule(TestCase):
def _do_test(self, module, input):
batch_size = input.shape[0]
with freeze_rng_state():
# get per sample grads with ExpandedWeights context manager
actual_res = call_for_per_sample_grads(module, batch_size, input).sum()
actual_res.backward()
actual_grads = []
for param in module.parameters():
actual_grads.append(param.grad_sample)
del param.grad_sample
# get per sample grads with a for loop
expected_res = torch.tensor(0.)
expected_grads = []
for i in range(batch_size):
res = module(input[i].unsqueeze(0)).sum()
expected_grads.append(torch.autograd.grad(res, module.parameters(), torch.ones_like(res)))
expected_res += res
expected_grads = tuple(torch.stack(grad) for grad in zip(*expected_grads))
self.assertEqual(actual_res, expected_res)
assert [torch.allclose(actual, expected) for (actual, expected) in zip(actual_grads, expected_grads)]
def _do_test_multi_input(self, module, input):
class TestModule(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, input):
return self.module(input) + self.module(input)
batch_size = input.shape[0]
with freeze_rng_state():
# get per sample grads with ExpandedWeights context manager, calling .backward() twice
test_module = TestModule(module)
actual_res = call_for_per_sample_grads(test_module, batch_size, input).sum()
actual_res.backward()
actual_grads = []
for param in module.parameters():
actual_grads.append(param.grad_sample)
del param.grad_sample
# get per sample grads with a for loop, running over the input twice
expected_grads = []
for i in range(batch_size):
res = module(input[i].unsqueeze(0)).sum()
expected_grads.append(torch.autograd.grad(res, module.parameters(), torch.ones_like(res)))
expected_grads = tuple(torch.stack(grad) for grad in zip(*expected_grads))
assert [torch.allclose(actual, 2 * expected) for (actual, expected) in zip(actual_grads, expected_grads)]
def test_per_sample_api_failing(self):
module = nn.Linear(10, 10)
input = torch.randn(64, 10)
with self.assertRaisesRegex(RuntimeError, r"Module passed must be nn.Module"):
call_for_per_sample_grads("fail", 64, input)
with self.assertRaisesRegex(RuntimeError, r"Batch size passed must be an integer"):
call_for_per_sample_grads(module, 6.4, input)
with self.assertRaisesRegex(RuntimeError, r"Batch size must be positive"):
call_for_per_sample_grads(module, -64, input)
with self.assertRaisesRegex(RuntimeError, r"incorrect for multiple calls"):
loss = call_for_per_sample_grads(module, 64, input).sum()
loss.backward() # populate grad_sample fields
call_for_per_sample_grads(module, 64, input)
class ContextManagerTests(TestBase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
@property
def constructor_args(self):
return self._get_arg('constructor_args', False)
def test_context_manager(self, test_case):
module = self.constructor(*self.constructor_args)
input = self._get_input()
if len(input.shape) == 0 or input.shape[0] == 0:
raise unittest.SkipTest("Can't get per sample gradients when no batch dim or batch dim is 0")
if self.constructor == torch.nn.Linear and len(input.shape) == 1:
raise unittest.SkipTest("Can't get per sample gradients for input of rank 1")
test_case._do_test(module, input)
def test_context_manager_multiple_inputs(self, test_case):
module = self.constructor(*self.constructor_args)
input = self._get_input()
if len(input.shape) == 0 or input.shape[0] == 0:
raise unittest.SkipTest("Can't get per sample gradients when no batch dim or batch dim is 0")
if self.constructor == torch.nn.Linear and len(input.shape) == 1:
raise unittest.SkipTest("Can't get per sample gradients for input of rank 1")
test_case._do_test_multi_input(module, input)
# TODO: Once all of these use ModuleInfo, replace with ModuleInfo tests
# These currently use the legacy nn tests
supported_modules = ['Linear']
supported_tests = [t for t in module_tests + new_module_tests if 'module_name' in t and t['module_name'] in supported_modules]
for test_param in supported_tests:
if 'constructor' not in test_param:
name = test_param.pop('module_name')
test_param['constructor'] = getattr(nn, name)
decorator = test_param.pop('decorator', None)
test = ContextManagerTests(**test_param)
test_name = test.get_name()
if hasattr(TestExpandedWeightModule, test_name):
raise RuntimeError('Found two tests with the same name: ' + test_name)
test_name_multi_input = test.get_name() + "_multiple_inputs"
if hasattr(TestExpandedWeightModule, test_name_multi_input):
raise RuntimeError('Found two tests with the same name: ' + test_name)
if decorator is not None:
fn = decorator(fn)
setattr(TestExpandedWeightModule, test_name, lambda self, test=test: test.test_context_manager(self))
setattr(TestExpandedWeightModule, test_name_multi_input,
lambda self, test=test: test.test_context_manager_multiple_inputs(self))
# ------------- HELPER FUNCTIONS -----------------
def run_op(op, input, *args, **kwargs):
r"""
OpInfo for Embedding switches the input and weight so autograd tests will only check the derivative
of the weight, not the input, which can't be differentiable since its dtype is int. Calls op,
using the special ordering that Embedding's OpInfo expects for that case.
"""
if op.name == "nn.functional.embedding":
return op(args[0], input, **kwargs)
else:
return op(input, *args, **kwargs)
def make_expanded_weight(sample_input, batch_size):
def expanded_weight_or_clone(arg):
return ExpandedWeight(torch.clone(arg), batch_size) if is_diff_tensor(arg) else clone_if_tensor(arg)
ew_input = clone_if_tensor(sample_input.input)
ew_args = tuple(expanded_weight_or_clone(arg) for arg in sample_input.args)
ew_kwargs = {name: expanded_weight_or_clone(arg) for (name, arg) in sample_input.kwargs.items()}
return ew_input, ew_args, ew_kwargs
def supported_inputs(op, sample_inputs, supported_inputs=True):
r"""
ExpandedWeights currently does not support some use cases when there's no batch dimension or
operations that would cause inter-batch operations. Removes all of the cases it cannot deal with
"""
def filter_fn(input):
if op.name == "nn.functional.linear":
is_supported_input = len(input.input.shape) > 1 # input of rank 1 means no batch dim
elif op.name == "nn.functional.layer_norm":
normalized_shape = input.args[0]
is_supported_input = input.input.shape != normalized_shape # would cause inter-batch operations
elif op.name == "nn.functional.conv2d":
# currently can't deal with padding computation on Python level
is_supported_input = 'padding' not in input.kwargs or not isinstance(input.kwargs['padding'], str)
elif op.name == "nn.functional.embedding":
idx = input.args[0]
is_supported_input = len(idx.shape) > 1 # there's no batch size
else:
is_supported_input = True
is_supported_input = is_supported_input and input.input.shape[0] > 0 # 0 is not a valid batch size
return is_supported_input if supported_inputs else not is_supported_input
return [input for input in sample_inputs if filter_fn(input)]
def for_loop_per_sample_grad(batch_size, input, func, *args, **kwargs):
# get per sample grads by getting derivative for each input in a for loop
per_sample_grad = []
for i in range(batch_size):
per_sample_input = input[i]
result = func(per_sample_input.unsqueeze(0), *args, **kwargs)
diff_input_list = (per_sample_input,) + tuple(args) + tuple(kwargs.values())
diff_input_list = [i for i in diff_input_list if isinstance(i, torch.Tensor) and i.requires_grad]
per_sample_grad.append(torch.autograd.grad(result, diff_input_list, torch.ones_like(result), allow_unused=True))
if len(per_sample_grad) == batch_size:
per_sample_grad = tuple(torch.stack(grad) for grad in zip(*per_sample_grad))
return per_sample_grad
def is_diff_tensor(t):
return isinstance(t, ExpandedWeight) or (isinstance(t, torch.Tensor) and t.requires_grad)
def clone_if_tensor(t):
if isinstance(t, torch.Tensor):
res = torch.clone(t).detach()
res.requires_grad_(t.requires_grad)
return res
else:
return t
instantiate_device_type_tests(TestExpandedWeightHelperFunction, globals())
instantiate_device_type_tests(TestExpandedWeightFunctional, globals())
if __name__ == '__main__':
run_tests()

View File

@ -0,0 +1,4 @@
from .linear_expanded_weights import LinearPerSampleGrad
from .expanded_weights_impl import ExpandedWeight
__all__ = ['ExpandedWeight']

View File

@ -0,0 +1,59 @@
from torch._C import _TensorBase
import torch
import functools
from typing import Callable, Dict, cast
HANDLED_FUNCTIONS: Dict[Callable, torch.autograd.Function] = {}
def implements_per_sample_grads(torch_function):
@functools.wraps(torch_function)
def decorator(autograd_func):
HANDLED_FUNCTIONS[torch_function] = autograd_func
return autograd_func
return decorator
# ExpandedWeight represents a weight (parameter) Tensor that has an expanded
# batch dimension. Operations on the ExpandedWeight Tensor act exactly like
# those without an expanded batch dimension but a call to .backward() populates
# the original (unexpanded) tensor with per-sample-gradients for in the grad_sample field
#
# ExpandedWeight has a fallback that always fails since we cannot know what the batch
# dimension of the input tensor is and therefore cannot know if this is a valid call
#
# This is a __torch_function__ object but it could have also been a Tensor Extension
# with a dispatch key.
#
# Needs to be a tensor subclass to allow reparamaterization
class ExpandedWeight(torch.Tensor):
def __init__(self, orig_weight, batch_size):
self.batch_size = batch_size
self.orig_weight = orig_weight
handled_functions = HANDLED_FUNCTIONS
def __new__(cls, orig_weight, _):
if not isinstance(orig_weight, torch.Tensor):
raise RuntimeError(f"Can only make Expanded Weights of Tensors, got {type(orig_weight).__name__}")
if not orig_weight.requires_grad:
raise RuntimeError("Can only build ExpandedWeights objects of tensors that require_grad")
ret = torch.Tensor._make_subclass(cast(_TensorBase, cls), orig_weight, True)
return ret
@classmethod
def __torch_function__(cls, func, _, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
if func in cls.handled_functions:
return cls.handled_functions[func].apply(tuple(kwargs.keys()), *(args + tuple(kwargs.values())))
# We cannot use a fallback here because we do not know the batch dimension for any regular tensor inputs,
# i.e. torch.add(torch.Tensor, ExpandedWeight)
raise RuntimeError(f"Expanded Weights encountered but cannot handle function {func.__name__}")
@property
def dtype(self):
return self.orig_weight.dtype
@property
def shape(self):
return self.orig_weight.shape

View File

@ -0,0 +1,100 @@
import torch
from .expanded_weights_impl import ExpandedWeight
def standard_kwargs(kwarg_names, expanded_args):
r'''Most `__torch_function__`s standardize the kwargs that they give, so this will separate
the args and kwargs they pass. Functions that don't are linear and convND
'''
kwarg_values = expanded_args[len(expanded_args) - len(kwarg_names):]
expanded_args_without_kwargs = expanded_args[:len(expanded_args) - len(kwarg_names)]
expanded_kwargs = {name: value for (name, value) in zip(kwarg_names, kwarg_values)}
return expanded_args_without_kwargs, expanded_kwargs
def forward_helper(func, expanded_args, expanded_kwargs):
r'''Forward helper computes the forward pass for a function that has expanded weight(s)
passed to it. It will run the forward pass where all ExpandedWeights are their original
weight. It runs checks on the given arguments and detaches the outputs.
.. note:: First argument in :attr:`expanded_args` must be the input with the batch
dimension as the first element of the shape
.. note:: :attr:`func` must return a Tensor or tuple of Tensors
Args:
func: The function to be called
ctx: The context from the autograd.Function object. Will be used to save
computed state from the forward pass
expanded_args: Arguments to be passed to :attr:`func`. Will include arguments
that need to be unpacked because they are ExpandedWeights
num_true_outs: The number of outputs seen by the user since some functions
return auxillary data that is only used in the backward pass
'''
unexpanded_args, unexpanded_kwargs = _check_and_unexpand_args(func, expanded_args, expanded_kwargs)
return func(*unexpanded_args, **unexpanded_kwargs)
def _check_and_unexpand_args(func, expanded_args, expanded_kwargs):
# input must be the first argument passed
input = expanded_args[0]
if isinstance(input, ExpandedWeight):
raise RuntimeError("Expanded Weights do not support inputs that are also ExpandedWeights. "
f"Input must be a Tensor, got {type(input).__name__} in function {func.__name__}")
if not isinstance(input, torch.Tensor):
raise RuntimeError("Expanded Weights requires a Tensor as the first input to get the batch dimension, "
f"got {type(input).__name__} in function {func.__name__}")
if len(input.shape) == 0:
raise RuntimeError(f"Expanded Weights requires a batch dimension but got an input of size 0 in function {func.__name__}")
if input.shape[0] == 0:
raise RuntimeError("0 is not a valid batch size for Expanded Weights but got input tensor of "
f"{input} in function {func.__name__}")
batch_size = input.shape[0]
for arg in expanded_args + tuple(expanded_kwargs.values()):
if isinstance(arg, ExpandedWeight) and arg.batch_size != batch_size:
raise RuntimeError("Expected ExpandedWeights to have batch size matching input but got "
f"input batch size of {batch_size} with ExpandedWeight of batch size {arg.batch_size}")
unexpanded_args = tuple(arg.orig_weight if isinstance(arg, ExpandedWeight) else arg for arg in expanded_args)
unexpanded_kwargs = {name: arg.orig_weight if isinstance(arg, ExpandedWeight) else arg
for (name, arg) in expanded_kwargs.items()}
return unexpanded_args, unexpanded_kwargs
def set_grad_sample_if_exists(maybe_expanded_weight, per_sample_grad_fn):
unpacked = unpack_expanded_weight_or_tensor(maybe_expanded_weight)
if isinstance(maybe_expanded_weight, ExpandedWeight):
if hasattr(unpacked, "grad_sample") and unpacked.grad_sample is not None:
unpacked.grad_sample = unpacked.grad_sample + per_sample_grad_fn(unpacked)
else:
unpacked.grad_sample = per_sample_grad_fn(unpacked)
def unpack_expanded_weight_or_tensor(maybe_expanded_weight, func=lambda x: x):
if isinstance(maybe_expanded_weight, ExpandedWeight):
orig_weight = maybe_expanded_weight.orig_weight
return func(orig_weight)
elif isinstance(maybe_expanded_weight, torch.Tensor) and not maybe_expanded_weight.requires_grad:
return func(maybe_expanded_weight)
elif isinstance(maybe_expanded_weight, torch.Tensor):
raise RuntimeError("ExpandedWeights currently does not support a mixture of ExpandedWeight parameters "
"and normal Parameters. Please file and issue with pytorch/pytorch")
def sum_over_all_but_batch_and_last_n(
tensor: torch.Tensor, n_dims: int
) -> torch.Tensor:
r"""
Calculates the sum over all dimensions, except the first
(batch dimension), and excluding the last n_dims.
This function will ignore the first dimension and it will
not aggregate over the last n_dims dimensions.
Args:
tensor: An input tensor of shape ``(B, ..., X[n_dims-1])``.
n_dims: Number of dimensions to keep.
Example:
>>> tensor = torch.ones(1, 2, 3, 4, 5)
>>> sum_over_all_but_batch_and_last_n(tensor, n_dims=2).shape
torch.Size([1, 4, 5])
Returns:
A tensor of shape ``(B, ..., X[n_dims-1])``
"""
if tensor.dim() == n_dims + 1:
return tensor
else:
dims = list(range(1, tensor.dim() - n_dims))
return tensor.sum(dim=dims)

View File

@ -0,0 +1,38 @@
import torch
import torch.nn.functional as F
from .expanded_weights_impl import implements_per_sample_grads
from .expanded_weights_utils import \
forward_helper, set_grad_sample_if_exists, unpack_expanded_weight_or_tensor
from typing import List, Optional
@implements_per_sample_grads(F.linear)
class LinearPerSampleGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, _, *expanded_args_and_kwargs):
if len(expanded_args_and_kwargs[0].shape) <= 1:
raise RuntimeError("Input does not have a batch dimension. Expanded Weights expected input "
f"of at least rank 2, got of rank {len(expanded_args_and_kwargs[0].shape)}")
expanded_kwargs = {'bias': expanded_args_and_kwargs[2] if len(expanded_args_and_kwargs) == 3 else None}
expanded_args = expanded_args_and_kwargs[:2]
output = forward_helper(F.linear, expanded_args, expanded_kwargs)
ctx.args = expanded_args
ctx.kwargs = expanded_kwargs
return output
@staticmethod
def backward(ctx, grad_output):
input, weight = ctx.args
bias = ctx.kwargs['bias']
results: List[Optional[torch.Tensor]] = []
results.append(None) # for kwarg_names
if input.requires_grad:
results.append(grad_output.matmul(unpack_expanded_weight_or_tensor(weight)))
else:
results.append(None)
results.extend([None] * 2) # weight and bias don't compute batched gradients
# weight and bias get their grad_sample fields set directly if they exist
set_grad_sample_if_exists(weight, lambda _: torch.einsum("n...i,n...j->nij", grad_output, input))
set_grad_sample_if_exists(bias, lambda _: torch.einsum("n...k->nk", grad_output))
return tuple(results)

View File

@ -0,0 +1,57 @@
import torch
from torch.nn.utils._stateless import functional_call
from torch.nn.utils._expanded_weights.expanded_weights_impl import ExpandedWeight
# dependency on `functional_call` means that this can't be exposed in utils
# without creating circular dependency
def call_for_per_sample_grads(module, batch_size, args, kwargs=None):
r"""
call_for_per_sample_grads(module, batch_size, args, kwargs=None) -> Tensor
Invoked just like a forward pass, ``call_for_per_sample_grads`` will produce the same
forward result. Then, when backward is invoked, the parameters of ``module``
will have a ``grad_sample`` field populated with the per sample gradients
instead of the regular gradients
Args:
module: The ``nn.Module`` to get per sample gradients with respect to. All trainable
parameters will compute per sample gradients, located in a ``grad_sample``
field when ``backward`` is invoked
batch_size: The batch size of the input. Typically the input's first dimension
args: Tuple of positional args passed to ``module`` to perform the forward pass
kwargs: Dict of named args passed to ``module`` to perform the forward pass. Default: None
Examples::
>>> model = nn.Linear(4, 3)
>>> batched_input = torch.randn(5, 4) # batch size of 5
>>> res = call_for_per_sample_grads(model, batched_input.shape[0], batched_input).sum()
>>> res.backward()
>>> assert model.weight.shape == (3, 4)
>>> assert model.weight.grad_sample.shape == (5, 3, 4)
>>> assert model.weight.grad == None
>>> assert model.bias.shape == (3,)
>>> assert model.bias.grad_sample.shape == (5, 3)
>>> assert model.bias.grad == None
Note::
Does not work with any `nn.RNN`, including `nn.GRU` or `nn.LSTM`. Please use custom
rewrites that wrap an `nn.Linear` module. See Opacus for an example
"""
def maybe_build_expanded_weight(og_tensor):
if og_tensor.requires_grad:
return ExpandedWeight(og_tensor, batch_size)
else:
return og_tensor
if not isinstance(module, torch.nn.Module):
raise RuntimeError(f"Module passed must be nn.Module, got {type(module).__name__}")
if not isinstance(batch_size, int):
raise RuntimeError(f"Batch size passed must be an integer, got {type(batch_size).__name__}")
if batch_size < 1:
raise RuntimeError(f"Batch size must be positive, got {batch_size}")
for weight in module.parameters():
if hasattr(weight, "grad_sample") and weight.grad_sample is not None: # type: ignore[attr-defined]
raise RuntimeError("Current Expanded Weights accumulates the gradients, which will be incorrect for multiple "
f"calls without clearing gradients. Please clear out the grad_sample parameter of {weight} or "
"post an issue to pytorch/pytorch to prioritize correct behavior")
params = {name: maybe_build_expanded_weight(value) for (name, value) in module.named_parameters()}
return functional_call(module, params, args, kwargs)

View File

@ -619,6 +619,8 @@ class OpInfo(object):
test_conjugated_samples=True,
test_neg_view=True,
assert_jit_shape_analysis=False, # assert that jit shape analysis fully propagates shape
# the following metadata relates to ExpandedWeights support and is checked in test_expanded_weights.py
supports_expanded_weight=False,
):
dtypes_args = (dtypes, dtypesIfCPU, dtypesIfCUDA, dtypesIfROCM)
@ -778,6 +780,7 @@ class OpInfo(object):
self.test_conjugated_samples = test_conjugated_samples
self.test_neg_view = test_neg_view
self.supports_expanded_weight = supports_expanded_weight
def __call__(self, *args, **kwargs):
"""Calls the function variant of the operator."""
@ -11330,6 +11333,7 @@ op_db: List[OpInfo] = [
supports_fwgrad_bwgrad=True,
# See https://github.com/pytorch/pytorch/issues/66357
check_batched_forward_grad=False,
supports_expanded_weight=True,
supports_out=False),
OpInfo('nn.functional.bilinear',
aten_name='bilinear',