mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Fix typo under torchgen directory (#111154)
This PR fixes typo in comments and messages in files under `torchgen` directory. Pull Request resolved: https://github.com/pytorch/pytorch/pull/111154 Approved by: https://github.com/rajveer43, https://github.com/Skylion007
This commit is contained in:
parent
b460c30893
commit
ac48c11ab7
|
|
@ -124,7 +124,7 @@ def valuetype_type(
|
|||
raise AssertionError(f"unrecognized type {repr(t)}")
|
||||
|
||||
|
||||
# Translation of types occuring in JIT arguments to a C++ argument type.
|
||||
# Translation of types occurring in JIT arguments to a C++ argument type.
|
||||
# If remove_non_owning_ref_types is set, we'll guarantee that the outputed CType is not a non-owning reference type.
|
||||
# For example, we'll return std::vector<int> instead of IntArrayRef.
|
||||
# See Note [translation from C++ reference to value types]
|
||||
|
|
|
|||
|
|
@ -38,7 +38,7 @@ from torchgen.utils import assert_never
|
|||
# API have been fixed.
|
||||
|
||||
|
||||
# Translation of types occuring in JIT arguments to a C++ argument type.
|
||||
# Translation of types occurring in JIT arguments to a C++ argument type.
|
||||
# NB: For now, mutable doesn't do anything; but it could if we make
|
||||
# some more nominal types
|
||||
def argumenttype_type(t: Type, *, mutable: bool, binds: ArgName) -> NamedCType:
|
||||
|
|
|
|||
|
|
@ -216,7 +216,7 @@ class GenLazyIR(ABC):
|
|||
|
||||
scalar_args = schema.filtered_args(values=False, scalars=True)
|
||||
|
||||
# Shape constuction.
|
||||
# Shape construction.
|
||||
# Conditionally build shape depending on specified shape property
|
||||
if schema.properties.ShapePrecompute:
|
||||
shape_ctor_arg = "std::move(shapes),"
|
||||
|
|
|
|||
|
|
@ -93,7 +93,7 @@ def valuetype_type(
|
|||
raise AssertionError(f"unrecognized type {repr(t)}")
|
||||
|
||||
|
||||
# Translation of types occuring in JIT arguments to a C++ argument type.
|
||||
# Translation of types occurring in JIT arguments to a C++ argument type.
|
||||
# If remove_non_owning_ref_types is set, we'll guarantee that the outputed CType is not a non-owning reference type.
|
||||
# For example, we'll return std::vector<int> instead of IntArrayRef.
|
||||
# See Note [translation from C++ reference to value types]
|
||||
|
|
|
|||
|
|
@ -879,7 +879,7 @@ def main() -> None:
|
|||
"--manual_registration",
|
||||
"--manual-registration",
|
||||
action="store_true",
|
||||
help="a boolean flag to indicate whether we want to maually call"
|
||||
help="a boolean flag to indicate whether we want to manually call"
|
||||
"register_kernels() or rely on static init. ",
|
||||
)
|
||||
parser.add_argument(
|
||||
|
|
|
|||
|
|
@ -629,7 +629,7 @@ def emit_inplace_functionalization_body(
|
|||
if ({str(not any_storage_args and f.func.kind() == SchemaKind.inplace).lower()}) {{
|
||||
// Before converting the mutable op to its functional variant, run meta tensors through the original op.
|
||||
// This will help us catch shape errors that apply to inplace ops that wouldn't apply to their functional variants.
|
||||
// (We can only do this for inplace ops today though, because they technicaly all support meta tensors).
|
||||
// (We can only do this for inplace ops today though, because they technically all support meta tensors).
|
||||
{meta_conversion_str}
|
||||
at::AutoDispatchSkipFunctionalize func_guard;
|
||||
c10::impl::ExcludeDispatchKeyGuard guard(exclude_keys_for_meta_dispatch);
|
||||
|
|
@ -731,7 +731,7 @@ def gen_functionalization_registration(
|
|||
# See Note [resize_ in Functionalization]
|
||||
return []
|
||||
assert not f.is_view_op
|
||||
# functionalization needs to generate and register kernals for inplace ops.
|
||||
# functionalization needs to generate and register kernels for inplace ops.
|
||||
# We *also* need to directly register CompositeImplicitAUtograd kernels
|
||||
# so that they decompose properly before functioanlization.
|
||||
if modifies_arguments(f):
|
||||
|
|
|
|||
|
|
@ -426,7 +426,7 @@ def run_gen_lazy_tensor(
|
|||
|
||||
Generated lazy native functions all perform shape inference, by first using a meta:: kernel
|
||||
if available for that op, and otherwise using a 'compute_shape_{op}' function instead. The generator
|
||||
knows the call signature for compute_shape_{op} becuase it matches the nativefunction (and meta::) signature,
|
||||
knows the call signature for compute_shape_{op} because it matches the nativefunction (and meta::) signature,
|
||||
so it just has to check whether the op is structured and generate a call for one or the other. It's up to the dev
|
||||
to supply the missing compute_shape_{op} function, but the codegen at least warns you about this and provides
|
||||
the expected signature which can be copy-pasted into shape_inference.h.
|
||||
|
|
|
|||
|
|
@ -1413,7 +1413,7 @@ class FunctionSchema:
|
|||
), "out= ops that accept tensor lists as out arguments "
|
||||
"are expected to have no return type (since you can't do method chaining on them)"
|
||||
else:
|
||||
# mutable keyward arguments whose name has _scratch_ prefix are
|
||||
# mutable keyword arguments whose name has _scratch_ prefix are
|
||||
# scratch tensors for memory planning and should not be returned
|
||||
assert len(
|
||||
[
|
||||
|
|
@ -2208,7 +2208,7 @@ class Arguments:
|
|||
post_self_positional=tuple(
|
||||
map(strip_arg_annotation, self.post_self_positional)
|
||||
),
|
||||
# Since TensorOptions are droped, the post_tensor_options_kwargs are
|
||||
# Since TensorOptions are dropped, the post_tensor_options_kwargs are
|
||||
# converted to pre_tensor_options_kwargs
|
||||
pre_tensor_options_kwarg_only=tuple(
|
||||
map(strip_arg_annotation, self.pre_tensor_options_kwarg_only)
|
||||
|
|
|
|||
|
|
@ -371,8 +371,8 @@ def add_generated_native_functions(
|
|||
rs: List[NativeFunction],
|
||||
indices: Dict[DispatchKey, Dict[OperatorName, BackendMetadata]],
|
||||
) -> None:
|
||||
# The main code for gnerating new NativeFunctions
|
||||
# First we group of NaitveFunctions by schema kind,
|
||||
# The main code for generating new NativeFunctions
|
||||
# First we group of NativeFunctions by schema kind,
|
||||
# then we detect which ones are missing and generate them.
|
||||
pre_grouped_native_functions = pre_group_native_functions(rs)
|
||||
for d in pre_grouped_native_functions.values():
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user