mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Add cachebench (#147537)
This PR adds a new benchmark called cachebench in order to measure/demonstrate the prowess of PT2 caching. ``` python benchmarks/dynamo/cachebench.py --output="result.json" ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/147537 Approved by: https://github.com/jamesjwu
This commit is contained in:
parent
af1072ffb6
commit
a8ce4d1846
172
benchmarks/dynamo/cachebench.py
Normal file
172
benchmarks/dynamo/cachebench.py
Normal file
|
|
@ -0,0 +1,172 @@
|
|||
import argparse
|
||||
import dataclasses
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import subprocess
|
||||
import sys
|
||||
import tempfile
|
||||
|
||||
from torch._inductor.utils import fresh_inductor_cache
|
||||
|
||||
|
||||
logger: logging.Logger = logging.getLogger(__name__)
|
||||
|
||||
TIMEOUT: int = 2000
|
||||
|
||||
MODELS: list[str] = ["nanogpt", "BERT_pytorch", "resnet50"]
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class RunResult:
|
||||
model: str
|
||||
mode: str # inference or training
|
||||
dynamic: bool
|
||||
device: str # cuda or cpu
|
||||
cold_compile_s: float
|
||||
warm_compile_s: float
|
||||
speedup: float
|
||||
|
||||
|
||||
def get_compile_time(file: tempfile._TemporaryFileWrapper) -> float:
|
||||
lines = file.readlines()
|
||||
# Decode from byte string, remove new lines, parse csv
|
||||
lines = [line.decode("utf-8").strip().split(",") for line in lines]
|
||||
compilation_time_idx = lines[0].index("compilation_latency")
|
||||
compilation_time = lines[1][compilation_time_idx]
|
||||
return float(compilation_time)
|
||||
|
||||
|
||||
def _run_torchbench_from_args(model: str, args: list[str]) -> tuple[float, float]:
|
||||
with fresh_inductor_cache():
|
||||
env = os.environ.copy()
|
||||
with tempfile.NamedTemporaryFile(suffix=".csv") as file:
|
||||
args.append("--output=" + file.name)
|
||||
logger.info(f"Performing cold-start run for {model}") # noqa: G004
|
||||
subprocess.check_call(args, timeout=TIMEOUT, env=env)
|
||||
cold_compile_time = get_compile_time(file)
|
||||
|
||||
args.pop()
|
||||
with tempfile.NamedTemporaryFile(suffix=".csv") as file:
|
||||
args.append("--output=" + file.name)
|
||||
logger.info(f"Performing warm-start run for {model}") # noqa: G004
|
||||
subprocess.check_call(args, timeout=TIMEOUT, env=env)
|
||||
warm_compile_time = get_compile_time(file)
|
||||
|
||||
return cold_compile_time, warm_compile_time
|
||||
|
||||
|
||||
def _run_torchbench_model(results: list[RunResult], model: str, device: str) -> None:
|
||||
cur_file = os.path.abspath(__file__)
|
||||
torchbench_file = os.path.join(os.path.dirname(cur_file), "torchbench.py")
|
||||
assert os.path.exists(
|
||||
torchbench_file
|
||||
), f"Torchbench does not exist at {torchbench_file}"
|
||||
|
||||
base_args = [
|
||||
sys.executable,
|
||||
torchbench_file,
|
||||
f"--only={model}",
|
||||
"--repeat=1",
|
||||
"--performance",
|
||||
"--backend=inductor",
|
||||
f"--device={device}",
|
||||
]
|
||||
for mode, mode_args in [
|
||||
("inference", ["--inference", "--bfloat16"]),
|
||||
("training", ["--training", "--amp"]),
|
||||
]:
|
||||
for dynamic, dynamic_args in [
|
||||
(False, []),
|
||||
(True, ["--dynamic-shapes", "--dynamic-batch-only"]),
|
||||
]:
|
||||
args = list(base_args)
|
||||
args.extend(mode_args)
|
||||
args.extend(dynamic_args)
|
||||
|
||||
logger.info(f"Command: {args}") # noqa: G004
|
||||
try:
|
||||
cold_compile_t, warm_compile_t = _run_torchbench_from_args(model, args)
|
||||
results.append(
|
||||
RunResult(
|
||||
"model",
|
||||
mode,
|
||||
dynamic,
|
||||
device,
|
||||
cold_compile_t,
|
||||
warm_compile_t,
|
||||
cold_compile_t / warm_compile_t,
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
return None
|
||||
|
||||
|
||||
def _write_results_to_json(results: list[RunResult], output_filename: str) -> None:
|
||||
records = []
|
||||
for result in results:
|
||||
for metric_name, value in [
|
||||
("cold_compile_time(s)", result.cold_compile_s),
|
||||
("warm_compile_time(s)", result.warm_compile_s),
|
||||
("speedup", result.speedup),
|
||||
]:
|
||||
records.append(
|
||||
{
|
||||
"benchmark": {
|
||||
"name": "cache_benchmarks",
|
||||
"mode": result.mode,
|
||||
"extra_info": {
|
||||
"is_dynamic": result.dynamic,
|
||||
"device": result.device,
|
||||
},
|
||||
},
|
||||
"model": {
|
||||
"name": result.model,
|
||||
"backend": "inductor",
|
||||
},
|
||||
"metric": {
|
||||
"name": metric_name,
|
||||
"type": "OSS model",
|
||||
"benchmark_values": [value],
|
||||
},
|
||||
}
|
||||
)
|
||||
with open(output_filename, "w") as f:
|
||||
json.dump(records, f)
|
||||
|
||||
|
||||
def parse_cmd_args() -> argparse.Namespace:
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Run a TorchBench ServiceLab benchmark."
|
||||
)
|
||||
parser.add_argument(
|
||||
"-m",
|
||||
"--model",
|
||||
help="Name of the model to run",
|
||||
)
|
||||
parser.add_argument("-d", "--device", default="cuda", help="cpu or cuda")
|
||||
parser.add_argument(
|
||||
"--output",
|
||||
required=True,
|
||||
help="The output filename (json)",
|
||||
)
|
||||
args, _ = parser.parse_known_args()
|
||||
return args
|
||||
|
||||
|
||||
def main() -> None:
|
||||
args = parse_cmd_args()
|
||||
|
||||
results: list[RunResult] = []
|
||||
|
||||
if args.model is not None:
|
||||
_run_torchbench_model(results, args.model, args.device)
|
||||
else:
|
||||
for model in MODELS:
|
||||
_run_torchbench_model(results, model, args.device)
|
||||
_write_results_to_json(results, args.output)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Loading…
Reference in New Issue
Block a user