mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
[Memento] On-demand mode using without torch api (#153171)
Summary: CUDA Post: https://fb.workplace.com/groups/ai.efficiency.tools.users/permalink/2020094788475989/ # Context In this diff, we want to enable the on-demand mode of memory snapshot to allow user to trace any remote process via dyno command line. # Design decision **How do we send on-demand signal to remote process** We leverage the dyno-Kineto approach. Since dyno is running on all machine in Meta, it can send a request to the remote machine to start the Kineto. Kineto will start another thread for memoryProfiler (https://fburl.com/code/dxsmmrok) **why we use different approach as CUDA** On CUDA side, we are using pybind to load torch Module and invoke the python api to start/stop the profiling. However, this requires us to compile the whole torch binary in the predictor which is not recommended by runtime(andruwang) Thus, we decide to use the CPP api directly to avoid un-necessary dependency **why the snapshot is saved as json string directly instead of pickle** Pickle is primarily designed for use with Python and doesn't have well support in cpp. Also, it is hard for user to download the snapshot file and open locally. Due to the dependency issue, it is hard to import the gzip/pickle library to decode the data. Thus, let's use JSON for now. I will work on the visualizer to fasten the render and support other format later. **Plan**: * Now, we will encoded file into gz for MTIA ondemand only and update the visualizer to support both type. * Update auto-trace and CUDA side to encode in gzip as well * Fully remove pickle dependency. Test Plan: # Remote cogwheel test Servicelab: https://fburl.com/servicelab/pckux7a3 snapshot file manifold: https://fburl.com/manifold/fnotk18c snapshot file in pastry: P1805522232 Visualization on D74399684 {F1977786422} # Local Predictor Test url: https://fburl.com/pytorch_memory_visualizer/y06kskkm {F1977787329} Differential Revision: D74179606 Pull Request resolved: https://github.com/pytorch/pytorch/pull/153171 Approved by: https://github.com/sraikund16
This commit is contained in:
parent
181bfabb9e
commit
a762dd1f67
|
|
@ -126,7 +126,7 @@ struct TORCH_API MTIAHooksInterface : AcceleratorHooksInterface {
|
|||
FAIL_MTIAHOOKS_FUNC(__func__);
|
||||
}
|
||||
|
||||
virtual PyObject* memorySnapshot() const {
|
||||
virtual PyObject* memorySnapshot(const std::optional<std::string>& local_path) const {
|
||||
FAIL_MTIAHOOKS_FUNC(__func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -181,6 +181,7 @@ THIRD_PARTY_LIBS = {
|
|||
"pyyaml": ["//third-party/pypi/pyyaml:pyyaml", "//third_party:pyyaml"],
|
||||
"rt": ["//xplat/third-party/linker_lib:rt", "//third_party:rt"],
|
||||
"ruy": ["//third-party/ruy:ruy_xplat_lib", "//third_party:ruy_lib"],
|
||||
"nlohmann-json": ["fbsource//third-party/nlohmann-json:nlohmann-json", "//third_party:nlohmann-json"],
|
||||
"sleef_arm": ["//third-party/sleef:sleef_arm", "//third_party:sleef_arm"],
|
||||
}
|
||||
|
||||
|
|
@ -1735,6 +1736,7 @@ def define_buck_targets(
|
|||
deps = [
|
||||
third_party("glog"),
|
||||
third_party("kineto"),
|
||||
third_party("nlohmann-json"),
|
||||
],
|
||||
exported_deps = [
|
||||
":aten_cpu",
|
||||
|
|
|
|||
|
|
@ -101,6 +101,7 @@ libtorch_profiler_sources = [
|
|||
"torch/csrc/profiler/collection.cpp",
|
||||
"torch/csrc/profiler/data_flow.cpp",
|
||||
"torch/csrc/profiler/kineto_shim.cpp",
|
||||
"torch/csrc/mtia/profiler/MTIAMemoryProfiler.cpp",
|
||||
"torch/csrc/profiler/kineto_client_interface.cpp",
|
||||
"torch/csrc/profiler/orchestration/observer.cpp",
|
||||
"torch/csrc/profiler/orchestration/python_tracer.cpp",
|
||||
|
|
|
|||
|
|
@ -1162,7 +1162,7 @@ class PythonMemoryTracer final : public python_tracer::PythonMemoryTracerBase {
|
|||
~PythonMemoryTracer() override = default;
|
||||
void start() override;
|
||||
void stop() override;
|
||||
void export_memory_history(const std::string path) override;
|
||||
void export_memory_history(const std::string& path) override;
|
||||
};
|
||||
|
||||
static void toggle_memory_tracing(bool enable) {
|
||||
|
|
@ -1196,7 +1196,7 @@ void PythonMemoryTracer::start() {
|
|||
toggle_memory_tracing(true);
|
||||
}
|
||||
|
||||
void PythonMemoryTracer::export_memory_history(const std::string path) {
|
||||
void PythonMemoryTracer::export_memory_history(const std::string& path) {
|
||||
pybind11::gil_scoped_acquire gil;
|
||||
THPObjectPtr torch_cuda_memory_module(
|
||||
PyImport_ImportModule("torch.cuda.memory"));
|
||||
|
|
|
|||
|
|
@ -96,7 +96,8 @@ void initModule(PyObject* module) {
|
|||
});
|
||||
|
||||
m.def("_mtia_memorySnapshot", []() {
|
||||
PyObject* raw_pyobject = at::detail::getMTIAHooks().memorySnapshot();
|
||||
PyObject* raw_pyobject =
|
||||
at::detail::getMTIAHooks().memorySnapshot(std::nullopt);
|
||||
return py::reinterpret_steal<py::object>(raw_pyobject);
|
||||
});
|
||||
|
||||
|
|
|
|||
35
torch/csrc/mtia/profiler/MTIAMemoryProfiler.cpp
Normal file
35
torch/csrc/mtia/profiler/MTIAMemoryProfiler.cpp
Normal file
|
|
@ -0,0 +1,35 @@
|
|||
#include <ATen/Context.h>
|
||||
#include <ATen/detail/MTIAHooksInterface.h>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include <torch/csrc/mtia/profiler/MTIAMemoryProfiler.h>
|
||||
|
||||
using json = nlohmann::json;
|
||||
|
||||
namespace torch::mtia {
|
||||
|
||||
void MTIAMemoryProfiler::start() {
|
||||
at::detail::getMTIAHooks().recordMemoryHistory("all", "all", 150000);
|
||||
}
|
||||
|
||||
void MTIAMemoryProfiler::export_memory_history(const std::string& path) {
|
||||
at::detail::getMTIAHooks().memorySnapshot(path);
|
||||
return;
|
||||
}
|
||||
|
||||
void MTIAMemoryProfiler::stop() {
|
||||
at::detail::getMTIAHooks().recordMemoryHistory(std::nullopt, "all", 0);
|
||||
}
|
||||
|
||||
std::unique_ptr<torch::profiler::impl::python_tracer::PythonMemoryTracerBase>
|
||||
getMemoryTracer() {
|
||||
return std::make_unique<MTIAMemoryProfiler>();
|
||||
}
|
||||
|
||||
void initMemoryProfiler() {
|
||||
if (at::detail::isMTIAHooksBuilt()) {
|
||||
fprintf(stderr, "Initializing MTIA Memory Tracer\n");
|
||||
torch::profiler::impl::python_tracer::registerMemoryTracer(
|
||||
&getMemoryTracer);
|
||||
}
|
||||
}
|
||||
} // namespace torch::mtia
|
||||
20
torch/csrc/mtia/profiler/MTIAMemoryProfiler.h
Normal file
20
torch/csrc/mtia/profiler/MTIAMemoryProfiler.h
Normal file
|
|
@ -0,0 +1,20 @@
|
|||
#pragma once
|
||||
#include <torch/csrc/profiler/orchestration/python_tracer.h>
|
||||
|
||||
namespace torch::mtia {
|
||||
using namespace torch::profiler::impl::python_tracer;
|
||||
|
||||
void initMemoryProfiler();
|
||||
|
||||
std::unique_ptr<PythonMemoryTracerBase> getMemoryTracer();
|
||||
|
||||
class MTIAMemoryProfiler final : public PythonMemoryTracerBase {
|
||||
public:
|
||||
explicit MTIAMemoryProfiler() = default;
|
||||
~MTIAMemoryProfiler() override = default;
|
||||
void start() override;
|
||||
void stop() override;
|
||||
void export_memory_history(const std::string& path) override;
|
||||
};
|
||||
|
||||
} // namespace torch::mtia
|
||||
|
|
@ -2,6 +2,7 @@
|
|||
#include <ATen/Context.h>
|
||||
#include <libkineto.h>
|
||||
#include <torch/csrc/autograd/profiler_kineto.h>
|
||||
#include <torch/csrc/mtia/profiler/MTIAMemoryProfiler.h>
|
||||
#include <torch/csrc/profiler/kineto_client_interface.h>
|
||||
#include <chrono>
|
||||
#include <thread>
|
||||
|
|
@ -23,7 +24,9 @@ using namespace torch::autograd::profiler;
|
|||
|
||||
class LibKinetoClient : public libkineto::ClientInterface {
|
||||
public:
|
||||
void init() override {}
|
||||
void init() override {
|
||||
::torch::mtia::initMemoryProfiler();
|
||||
}
|
||||
|
||||
void prepare(
|
||||
bool report_input_shapes = false,
|
||||
|
|
|
|||
|
|
@ -24,7 +24,7 @@ struct NoOpMemoryPythonTracer : public PythonMemoryTracerBase {
|
|||
~NoOpMemoryPythonTracer() override = default;
|
||||
void start() override {}
|
||||
void stop() override {}
|
||||
void export_memory_history(const std::string path) override {}
|
||||
void export_memory_history(const std::string&) override {}
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
|
|
|||
|
|
@ -66,7 +66,7 @@ struct TORCH_API PythonMemoryTracerBase {
|
|||
|
||||
virtual void start() = 0;
|
||||
virtual void stop() = 0;
|
||||
virtual void export_memory_history(const std::string path) = 0;
|
||||
virtual void export_memory_history(const std::string& path) = 0;
|
||||
};
|
||||
|
||||
using MakeMemoryFn = std::unique_ptr<PythonMemoryTracerBase> (*)();
|
||||
|
|
|
|||
|
|
@ -115,6 +115,49 @@ struct PythonTraceback : public CapturedTraceback::Python {
|
|||
|
||||
} // namespace
|
||||
|
||||
std::vector<nlohmann::json> json_symbolize(
|
||||
std::vector<CapturedTraceback*>& to_symbolize) {
|
||||
std::unordered_map<CapturedTraceback*, uint64_t> cached_frames;
|
||||
std::vector<CapturedTraceback*> unique_frames;
|
||||
for (const auto& sc : to_symbolize) {
|
||||
auto it = cached_frames.find(sc);
|
||||
if (it == cached_frames.end()) {
|
||||
cached_frames.try_emplace(sc, unique_frames.size());
|
||||
unique_frames.push_back(sc);
|
||||
}
|
||||
}
|
||||
auto s = symbolize(unique_frames);
|
||||
|
||||
std::string line_s = "line";
|
||||
std::string name_s = "name";
|
||||
std::string filename_s = "filename";
|
||||
std::vector<nlohmann::json> all_frames;
|
||||
|
||||
for (const auto& f : s.all_frames) {
|
||||
nlohmann::json d;
|
||||
d[name_s] = f.funcname;
|
||||
d[filename_s] = f.filename;
|
||||
d[line_s] = f.lineno;
|
||||
all_frames.emplace_back(std::move(d));
|
||||
}
|
||||
|
||||
std::vector<nlohmann::json> py_unique_frames;
|
||||
for (const auto& t : s.tracebacks) {
|
||||
nlohmann::json l;
|
||||
for (const auto& e : t) {
|
||||
l.emplace_back(all_frames.at(e));
|
||||
}
|
||||
py_unique_frames.push_back(std::move(l));
|
||||
}
|
||||
|
||||
std::vector<nlohmann::json> result;
|
||||
result.reserve(to_symbolize.size());
|
||||
for (const auto& sc : to_symbolize) {
|
||||
result.push_back(py_unique_frames.at(cached_frames.at(sc)));
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
std::vector<py::object> py_symbolize(
|
||||
std::vector<CapturedTraceback*>& to_symbolize) {
|
||||
// we dedup repeated to_symbolize objects to prevent
|
||||
|
|
|
|||
|
|
@ -1,5 +1,6 @@
|
|||
#include <torch/csrc/profiler/combined_traceback.h>
|
||||
|
||||
#include <nlohmann/json.hpp>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <torch/csrc/utils/pybind.h>
|
||||
|
||||
|
|
@ -14,6 +15,10 @@ namespace torch {
|
|||
TORCH_API std::vector<pybind11::object> py_symbolize(
|
||||
std::vector<CapturedTraceback*>& to_symbolize);
|
||||
|
||||
// Return the callback in json format so that it can be used within cpp
|
||||
TORCH_API std::vector<nlohmann::json> json_symbolize(
|
||||
std::vector<CapturedTraceback*>& to_symbolize);
|
||||
|
||||
// requires GIL to be held, frees any pending free frames
|
||||
TORCH_PYTHON_API void freeDeadCapturedTracebackFrames();
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user