Enable ASAN on inductor CUDA tests (#148749)

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148749
Approved by: https://github.com/jansel
This commit is contained in:
cyy 2025-03-10 23:53:40 +00:00 committed by PyTorch MergeBot
parent b215841ebb
commit a6e71dbc88
2 changed files with 3 additions and 4 deletions

View File

@ -9,7 +9,7 @@ from torch._inductor.test_case import TestCase as InductorTestCase
from torch._inductor.test_operators import realize
from torch._inductor.utils import fresh_inductor_cache, is_big_gpu, run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.common_utils import slowTest, TEST_WITH_ASAN
from torch.testing._internal.common_utils import slowTest
from torch.testing._internal.inductor_utils import HAS_CPU, HAS_CUDA
@ -181,7 +181,7 @@ class BenchmarkFusionTestTemplate:
self.common(f, (x,))
if HAS_CUDA and not TEST_WITH_ASAN:
if HAS_CUDA:
class BenchmarkFusionCudaTest(TestCase):
common = check_model_cuda

View File

@ -17,7 +17,6 @@ from torch._dynamo.utils import counters
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase
from torch.testing._internal.common_cuda import tf32_on_and_off
from torch.testing._internal.common_utils import TEST_WITH_ASAN
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_CPU, HAS_GPU
@ -209,7 +208,7 @@ if HAS_CPU and not torch.backends.mps.is_available():
copy_tests(EfficientConvBNEvalTemplate, EfficientConvBNEvalCpuTests, "cpu")
if HAS_GPU and not TEST_WITH_ASAN:
if HAS_GPU:
class EfficientConvBNEvalGpuTests(TestCase):
device = GPU_TYPE