mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Minor gradcheck update to reduce computations (#45757)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/45757 Test Plan: Imported from OSS Reviewed By: glaringlee Differential Revision: D24137143 Pulled By: anjali411 fbshipit-source-id: e0174ec03d93b1fedf27baa72c3542dac0b70058
This commit is contained in:
parent
e154b36685
commit
a3662fa78c
|
|
@ -102,13 +102,11 @@ def get_numerical_jacobian(fn, input, target=None, eps=1e-3, grad_out=1.0):
|
|||
d[d_idx] = grad_out.conjugate() * conj_w_d + grad_out * w_d.conj()
|
||||
elif ds_dx.is_complex(): # R -> C
|
||||
# w_d = conj_w_d = 0.5 * ds_dx
|
||||
dL_dz_conj = 0.5 * (grad_out.conjugate() * ds_dx + grad_out * ds_dx.conj())
|
||||
# The above formula is derived for a C -> C function that's a part of
|
||||
# bigger function with real valued output. From separate calculations,
|
||||
# it can be verified that the gradient for R -> C function
|
||||
# equals to real value of the result obtained from the generic formula for
|
||||
# C -> C functions used above.
|
||||
d[d_idx] = torch.real(dL_dz_conj)
|
||||
# dL_dz_conj = 0.5 * [grad_out.conj() * ds_dx + grad_out * ds_dx.conj()]
|
||||
# = 0.5 * [grad_out.conj() * ds_dx + (grad_out.conj() * ds_dx).conj()]
|
||||
# = 0.5 * 2 * real(grad_out.conj() * ds_dx)
|
||||
# = real(grad_out.conj() * ds_dx)
|
||||
d[d_idx] = torch.real(grad_out.conjugate() * ds_dx)
|
||||
else: # R -> R
|
||||
d[d_idx] = ds_dx * grad_out
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user