mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Revert "Close some sources of fake tensor leakages (#159923)"
This reverts commit 5afa4187df.
Reverted https://github.com/pytorch/pytorch/pull/159923 on behalf of https://github.com/zou3519 due to broke aoti test in inductor periodic ([comment](https://github.com/pytorch/pytorch/pull/159923#issuecomment-3215580688))
This commit is contained in:
parent
3ea6cc8c2d
commit
981ac533c6
|
|
@ -1 +1 @@
|
|||
22bc29b4d503fc895ff73bc720ff396e9723465f
|
||||
e03a63be43e33596f7f0a43b0f530353785e4a59
|
||||
|
|
|
|||
|
|
@ -4367,80 +4367,6 @@ def forward(self, x):
|
|||
x = torch.tensor([1, 2])
|
||||
self.assertTrue(torch.allclose(mod(x), ep.module()(x)))
|
||||
|
||||
def test_nested_module_fake_tensor_leak(self):
|
||||
class Bar(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self._tensor_cache = None
|
||||
|
||||
def forward(self, x):
|
||||
if self._tensor_cache is None:
|
||||
self._tensor_cache = x + 2
|
||||
return self._tensor_cache.sum() + x.sum()
|
||||
|
||||
class Foo(torch.nn.Module):
|
||||
def __init__(self, bar):
|
||||
super().__init__()
|
||||
self.bar = bar
|
||||
|
||||
def forward(self, x):
|
||||
return self.bar(x)
|
||||
|
||||
foo = Foo(Bar())
|
||||
_ = export(foo, (torch.ones(4, 4),), strict=False)
|
||||
self.assertTrue(foo.bar._tensor_cache is None)
|
||||
|
||||
def test_export_leak_compile(self):
|
||||
class BaseModule(torch.nn.Module):
|
||||
def forward(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
class CacheModule(BaseModule):
|
||||
def __init__(self, cache: torch.Tensor):
|
||||
super().__init__()
|
||||
assert cache.ndim == 3
|
||||
self.cache = torch.nn.Parameter(cache, requires_grad=False)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
n_tokens = x.size(1)
|
||||
rolled_cache = torch.roll(self.cache.data, -n_tokens, dims=1)
|
||||
rolled_cache[:, -n_tokens:, :] = x
|
||||
self.cache.data = rolled_cache
|
||||
return self.cache
|
||||
|
||||
class LinearBlock(torch.nn.Module):
|
||||
def __init__(self, in_features, out_features, activation=None):
|
||||
super().__init__()
|
||||
self.linear = torch.nn.Linear(in_features, out_features)
|
||||
self.activation = activation
|
||||
|
||||
def forward(self, x):
|
||||
x = self.linear(x)
|
||||
return self.activation(x) if self.activation else x
|
||||
|
||||
class MyModel(BaseModule):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
default_cache = torch.zeros(1, 10, 5)
|
||||
self.cache_layer = CacheModule(default_cache)
|
||||
self.fc1 = LinearBlock(5, 10, activation=torch.nn.ReLU())
|
||||
self.fc2 = LinearBlock(10, 5)
|
||||
|
||||
def forward(self, x):
|
||||
cached = self.cache_layer(x)
|
||||
out = self.fc1(cached)
|
||||
out = self.fc2(out)
|
||||
return out
|
||||
|
||||
with self.assertRaisesRegex(
|
||||
RuntimeError,
|
||||
"We found a fake tensor in the exported program constant's list. "
|
||||
"This typically means our tracing system encountered an op that we can't trace through. "
|
||||
"For the potential source, you can refer to following model attribute: cache_layer.lifted_tensor_0. "
|
||||
"Please file an issue on github.",
|
||||
):
|
||||
_ = export(MyModel(), (torch.randn(1, 3, 5),), strict=False)
|
||||
|
||||
def test_export_for_training_with_container_type(self):
|
||||
class Foo(torch.nn.Module):
|
||||
def __init__(self) -> None:
|
||||
|
|
|
|||
|
|
@ -221,23 +221,10 @@ def _detect_attribute_assignment(mod: torch.nn.Module):
|
|||
# return any attributes of a module that are not standard attributes
|
||||
return {k: v for k, v in mod.__dict__.items() if k not in STD_ATTRS}
|
||||
|
||||
def _get_all_module_attributes(mod):
|
||||
# return attributes from all modules and submodules
|
||||
result = {}
|
||||
for name, submodule in mod.named_modules():
|
||||
result[name] = _get_attributes(submodule)
|
||||
return result
|
||||
|
||||
def _restore_all_module_attributes(mod, snapshot):
|
||||
# restore attributes to all modules and submodules
|
||||
for name, submodule in mod.named_modules():
|
||||
if name in snapshot:
|
||||
submodule.__dict__.update(snapshot[name])
|
||||
|
||||
# save state of attributes before enter
|
||||
snapshot = pytree.tree_map(
|
||||
lambda x: x,
|
||||
_get_all_module_attributes(mod),
|
||||
_get_attributes(mod),
|
||||
is_leaf=lambda x: type(x) in _pytree_subclasses_that_lose_info,
|
||||
)
|
||||
try:
|
||||
|
|
@ -249,54 +236,41 @@ def _detect_attribute_assignment(mod: torch.nn.Module):
|
|||
|
||||
def _collect_assigned_tensor_attributes(kp, v, _v):
|
||||
if _v is not v:
|
||||
module_name, attr, *rest = kp
|
||||
attr, *rest = kp
|
||||
if isinstance(v, torch.Tensor):
|
||||
module_prefix = f"{module_name.key}." if module_name.key else ""
|
||||
assigned_tensor_attributes.append(
|
||||
f"self.{module_prefix}{attr.key}{pytree.keystr(rest)}"
|
||||
f"self.{attr.key}{pytree.keystr(rest)}"
|
||||
)
|
||||
# TODO(avik): Assigning all other types are allowed right now.
|
||||
# Maybe in the future we want to limit this to primitive types?
|
||||
return v
|
||||
|
||||
new_attrs = _get_all_module_attributes(mod)
|
||||
new_attrs = _get_attributes(mod)
|
||||
if len(new_attrs) != len(snapshot):
|
||||
added_attrs = new_attrs.keys() - snapshot.keys()
|
||||
deleted_attrs = snapshot.keys() - new_attrs.keys()
|
||||
|
||||
# Check for added/deleted attributes across all modules
|
||||
for module_name in snapshot.keys() | new_attrs.keys():
|
||||
old_module_attrs = snapshot.get(module_name, {})
|
||||
new_module_attrs = new_attrs.get(module_name, {})
|
||||
if len(added_attrs) > 0:
|
||||
raise ValueError(
|
||||
f"During torch.export, following attrs were created in the model.forward: {added_attrs} "
|
||||
f"Such attributes must be registered as buffers using the `register_buffer` "
|
||||
f"API and must be initialized at model.__init__ "
|
||||
f"(https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.register_buffer)."
|
||||
)
|
||||
|
||||
if len(new_module_attrs) != len(old_module_attrs):
|
||||
added_attrs = new_module_attrs.keys() - old_module_attrs.keys()
|
||||
deleted_attrs = old_module_attrs.keys() - new_module_attrs.keys()
|
||||
|
||||
module_prefix = f"self.{module_name}." if module_name else "self."
|
||||
|
||||
if len(added_attrs) > 0:
|
||||
formatted_attrs = [f"{module_prefix}{attr}" for attr in added_attrs]
|
||||
raise ValueError(
|
||||
f"During torch.export, following attrs were created in the model.forward: {formatted_attrs} "
|
||||
f"Such attributes must be registered as buffers using the `register_buffer` "
|
||||
f"API and must be initialized at model.__init__ "
|
||||
f"(https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.register_buffer)."
|
||||
)
|
||||
|
||||
if len(deleted_attrs) > 0:
|
||||
formatted_attrs = [
|
||||
f"{module_prefix}{attr}" for attr in deleted_attrs
|
||||
]
|
||||
raise ValueError(
|
||||
f"During torch.export, following attrs were deleted in the model.forward: {formatted_attrs} "
|
||||
f"Such attributes must be registered as buffers using the `register_buffer` "
|
||||
f"API and must be initialized at model.__init__ "
|
||||
f"(https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.register_buffer)."
|
||||
)
|
||||
if len(deleted_attrs) > 0:
|
||||
raise ValueError(
|
||||
f"During torch.export, following attrs were deleted in the model.forward: {deleted_attrs} "
|
||||
f"Such attributes must be registered as buffers using the `register_buffer` "
|
||||
f"API and must be initialized at model.__init__ "
|
||||
f"(https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.register_buffer)."
|
||||
)
|
||||
|
||||
pytree.tree_map_with_path(
|
||||
_collect_assigned_tensor_attributes, snapshot, new_attrs
|
||||
)
|
||||
# restore state of all attributes (including, e.g., of primitive types)
|
||||
_restore_all_module_attributes(mod, snapshot)
|
||||
mod.__dict__.update(snapshot)
|
||||
|
||||
if assigned_tensor_attributes:
|
||||
if len(assigned_tensor_attributes) > 1:
|
||||
|
|
|
|||
|
|
@ -1850,14 +1850,6 @@ def _find_node(gm: torch.fx.GraphModule, name: str) -> torch.fx.Node:
|
|||
return next(iter(node for node in gm.graph.nodes if node.name == name))
|
||||
|
||||
|
||||
def _is_bogus_const_name(name: str):
|
||||
splitted_names = name.split(".")
|
||||
if len(splitted_names) < 1:
|
||||
return True
|
||||
|
||||
return splitted_names[-1].startswith("lifted_tensor")
|
||||
|
||||
|
||||
def _non_strict_export(
|
||||
mod: torch.nn.Module,
|
||||
args: tuple[Any, ...],
|
||||
|
|
@ -2057,11 +2049,6 @@ def _export_for_training(
|
|||
|
||||
original_state_dict = _get_original_state_dict(mod)
|
||||
|
||||
has_ambient_mode = False
|
||||
if not strict:
|
||||
flat_args, _ = pytree.tree_flatten((args, kwargs))
|
||||
has_ambient_mode = torch._guards.detect_fake_mode(flat_args) is not None
|
||||
|
||||
# Call the appropriate export function based on the strictness of tracing.
|
||||
export_func = _strict_export if strict else _non_strict_export
|
||||
|
||||
|
|
@ -2076,21 +2063,6 @@ def _export_for_training(
|
|||
_to_aten_func=_export_to_aten_ir_make_fx,
|
||||
)
|
||||
|
||||
# If we are tracing with fake inputs, it is expected to
|
||||
# see fake tensor constants.
|
||||
if not strict and not has_ambient_mode:
|
||||
for const, val in export_artifact.aten.constants.items():
|
||||
if isinstance(
|
||||
val, torch._subclasses.fake_tensor.FakeTensor
|
||||
) and _is_bogus_const_name(const):
|
||||
raise RuntimeError(
|
||||
f"We found a fake tensor in the exported program constant's list. "
|
||||
f"This typically means our tracing system encountered an op that "
|
||||
f"we can't trace through. For the potential source, you can refer to "
|
||||
f"following model attribute: {const}. "
|
||||
f"Please file an issue on github. "
|
||||
)
|
||||
|
||||
export_graph_signature = export_artifact.aten.sig
|
||||
|
||||
forward_arg_names = _get_forward_arg_names(mod, args, kwargs)
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user