mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Modified the docs to add example for torch.is_floating_point and torc… (#161951)
…h.is_complex. The PR proposes adding a simple, self-explanatory example to the documentation page. The example demonstrates the function's output for tensors with various data types, showing both True and False return values. Fixes #161859 Pull Request resolved: https://github.com/pytorch/pytorch/pull/161951 Approved by: https://github.com/zou3519
This commit is contained in:
parent
6f7608d603
commit
9480cdc0b6
|
|
@ -5555,26 +5555,48 @@ Example::
|
|||
add_docstr(
|
||||
torch.is_floating_point,
|
||||
r"""
|
||||
is_floating_point(input) -> (bool)
|
||||
is_floating_point(input: Tensor) -> bool
|
||||
|
||||
Returns True if the data type of :attr:`input` is a floating point data type i.e.,
|
||||
one of ``torch.float64``, ``torch.float32``, ``torch.float16``, and ``torch.bfloat16``.
|
||||
|
||||
Args:
|
||||
{input}
|
||||
|
||||
Example::
|
||||
|
||||
>>> torch.is_floating_point(torch.tensor([1.0, 2.0, 3.0]))
|
||||
True
|
||||
>>> torch.is_floating_point(torch.tensor([1, 2, 3], dtype=torch.int32))
|
||||
False
|
||||
>>> torch.is_floating_point(torch.tensor([1.0, 2.0, 3.0], dtype=torch.float16))
|
||||
True
|
||||
>>> torch.is_floating_point(torch.tensor([1, 2, 3], dtype=torch.complex64))
|
||||
False
|
||||
""".format(**common_args),
|
||||
)
|
||||
|
||||
add_docstr(
|
||||
torch.is_complex,
|
||||
r"""
|
||||
is_complex(input) -> (bool)
|
||||
is_complex(input: Tensor) -> bool
|
||||
|
||||
Returns True if the data type of :attr:`input` is a complex data type i.e.,
|
||||
one of ``torch.complex64``, and ``torch.complex128``.
|
||||
|
||||
Args:
|
||||
{input}
|
||||
|
||||
Example::
|
||||
|
||||
>>> torch.is_complex(torch.tensor([1, 2, 3], dtype=torch.complex64))
|
||||
True
|
||||
>>> torch.is_complex(torch.tensor([1, 2, 3], dtype=torch.complex128))
|
||||
True
|
||||
>>> torch.is_complex(torch.tensor([1, 2, 3], dtype=torch.int32))
|
||||
False
|
||||
>>> torch.is_complex(torch.tensor([1.0, 2.0, 3.0], dtype=torch.float16))
|
||||
False
|
||||
""".format(**common_args),
|
||||
)
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user