Add CPU version of hard sigmoid operator to caffe2 (#10837)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10837

Add CPU version of hard sigmoid operator to caffe2. The definition of
this operator can be found here:
https://github.com/onnx/onnx/blob/master/docs/Operators.md#HardSigmoid.

Reviewed By: BIT-silence

Differential Revision: D9489536

fbshipit-source-id: 67b3171ed96d5ebcc8d500d93e7827a4a9705a81
This commit is contained in:
Tommy Yu 2018-08-28 14:42:42 -07:00 committed by Facebook Github Bot
parent efd2aeac9e
commit 92ff070b83
3 changed files with 236 additions and 1 deletions

View File

@ -0,0 +1,154 @@
#include "caffe2/operators/hard_sigmoid_op.h"
#include <algorithm>
#include <functional>
#include <string>
#include "caffe2/utils/eigen_utils.h"
namespace caffe2 {
template <>
template <typename T>
bool HardSigmoidFunctor<CPUContext>::
operator()(const int N, const T* X, T* Y, CPUContext* /* context */) const {
EigenVectorArrayMap<T>(Y, N) =
(ConstEigenVectorArrayMap<T>(X, N) * T(alpha) + T(beta))
.cwiseMin(T(1))
.cwiseMax(T(0));
return true;
}
template <>
template <typename T>
bool HardSigmoidGradientFunctor<CPUContext>::Forward(
const std::vector<int>& Y_dims,
const std::vector<int>& /* dY_dims */,
const T* Y,
const T* dY,
T* dX,
CPUContext* /* context */) const {
const int size = std::accumulate(
Y_dims.cbegin(), Y_dims.cend(), 1, std::multiplies<int>());
ConstEigenVectorArrayMap<T> Y_arr(Y, size);
EigenVectorArrayMap<T>(dX, size) =
(Y_arr > T(0) && Y_arr < T(1))
.select(ConstEigenVectorArrayMap<T>(dY, size) * alpha, T(0));
return true;
}
namespace {
OpSchema::Cost CostInferenceForHardSigmoid(
const OperatorDef& def,
const vector<TensorShape>& in) {
struct OpSchema::Cost cost = PointwiseCostInference<4>(def, in);
cost.params_bytes = 0;
return cost;
}
} // namespace
REGISTER_CPU_OPERATOR(
HardSigmoid,
UnaryElementwiseWithArgsOp<
TensorTypes<float>,
CPUContext,
HardSigmoidFunctor<CPUContext>>);
REGISTER_CPU_OPERATOR(
HardSigmoidGradient,
BinaryElementwiseWithArgsOp<
TensorTypes<float>,
CPUContext,
HardSigmoidGradientFunctor<CPUContext>>);
// Input: X, output: Y
OPERATOR_SCHEMA(HardSigmoid)
.NumInputs(1)
.NumOutputs(1)
.AllowInplace({{0, 0}})
.CostInferenceFunction(CostInferenceForHardSigmoid)
.IdenticalTypeAndShape()
.SetDoc(R"DOC(
Applies hard sigmoid operation to the input data element-wise.
The HardSigmoid operation takes one input $X$, produces one output $Y$, and is defined as:
$$Y = max(0,min(1,x * alpha + beta))$$
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/hard_sigmoid_op.h
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/hard_sigmoid_op.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"HardSigmoid",
["X"],
["Y"],
alpha = 0.2,
beta = 0.5,
)
workspace.FeedBlob("X", np.random.randn(5).astype(np.float32))
print("input:", workspace.FetchBlob("X"))
workspace.RunOperatorOnce(op)
print("sigmoid:", workspace.FetchBlob("Y"))
```
**Result**
```
input: [ 1.5744036 0.31632107 1.7842269 1.4450722 -2.1726978 ]
hard_sigmoid: [ 0.81488073, 0.56326419, 0.85684538, 0.78901446, 0.06546044]
```
</details>
)DOC")
.Arg("alpha", "float: the slope of the function. Defaults to 0.2")
.Arg("beta", "float: the bias value of the function. Defaults to 0.5")
.Input(0, "X", "1D input tensor")
.Output(0, "Y", "1D output tensor with same shape as input")
.InheritOnnxSchema("HardSigmoid");
// Input: Y, dY, output: dX
OPERATOR_SCHEMA(HardSigmoidGradient)
.NumInputs(2)
.NumOutputs(1)
.AllowInplace({{1, 0}})
.SetDoc(R"DOC(
HardSigmoidGradient takes both Y and dY as well as an argument alpha and uses
this to update dX according to the chain rule and derivatives of the hard
sigmoid function.
)DOC");
namespace {
class GetHardSigmoidGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
std::vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
def_.type() + "Gradient",
"",
std::vector<std::string>{O(0), GO(0)},
std::vector<std::string>{GI(0)});
}
};
} // namespace
REGISTER_GRADIENT(HardSigmoid, GetHardSigmoidGradient);
} // namespace caffe2

View File

@ -0,0 +1,41 @@
#ifndef CAFFE2_OPERATORS_HARD_SIGMOID_H_
#define CAFFE2_OPERATORS_HARD_SIGMOID_H_
#include <vector>
#include "caffe2/operators/elementwise_ops.h"
namespace caffe2 {
template <class Context>
struct HardSigmoidFunctor {
explicit HardSigmoidFunctor(OperatorBase& op)
: alpha(op.GetSingleArgument<float>("alpha", 0.2f)),
beta(op.GetSingleArgument<float>("beta", 0.5f)) {}
template <typename T>
bool operator()(const int N, const T* X, T* Y, Context* context) const;
const float alpha, beta;
};
template <class Context>
struct HardSigmoidGradientFunctor {
explicit HardSigmoidGradientFunctor(OperatorBase& op)
: alpha(op.GetSingleArgument<float>("alpha", 0.2f)) {}
template <typename T>
bool Forward(
const std::vector<int>& Y_dims,
const std::vector<int>& dY_dims,
const T* Y,
const T* dY,
T* dX,
Context* context) const;
const float alpha;
};
} // namespace caffe2
#endif // CAFFE2CAFFE2_OPERATORS_HARD_SIGMOID_H_

View File

@ -4,7 +4,7 @@ from __future__ import print_function
from __future__ import unicode_literals from __future__ import unicode_literals
from caffe2.python import core, workspace from caffe2.python import core, workspace
from hypothesis import given from hypothesis import given, assume
import caffe2.python.hypothesis_test_util as hu import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st import hypothesis.strategies as st
import numpy as np import numpy as np
@ -333,6 +333,46 @@ class TestElementwiseOps(hu.HypothesisTestCase):
self.assertDeviceChecks(dc, op, [X], [0]) self.assertDeviceChecks(dc, op, [X], [0])
self.assertGradientChecks(gc, op, [X], 0, [0]) self.assertGradientChecks(gc, op, [X], 0, [0])
@given(X=hu.tensor(dtype=np.float32),
inplace=st.booleans(),
alpha=st.floats(min_value=-100.0, max_value=100.0),
beta=st.floats(min_value=-100.0, max_value=100.0),
engine=st.sampled_from([""]),
**hu.gcs_cpu_only)
def test_hard_sigmoid(self, X, inplace, alpha, beta, engine, gc, dc):
# Prevent alpha and beta from mutually being 0 to avoid a division
# error when adjusting our inputs
assume(alpha != 0.0 or beta != 0.0)
op = core.CreateOperator(
"HardSigmoid",
["X"],
["X"] if inplace else ["Y"],
alpha=alpha,
beta=beta,
engine=engine,
)
def hard_sigmoid_ref(X):
return [np.minimum(1.0, np.maximum(0.0, X * alpha + beta))]
# Adjust inputs to avoid differentitating at inflection points
if abs(alpha) > 0.001:
Y = X * alpha + beta
Y += 0.04 * np.sign(Y)
Y[Y == 0.0] += 0.1
Y[Y == 1.0] -= 0.1
X = (Y - beta) / alpha
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[X],
reference=hard_sigmoid_ref,
)
self.assertDeviceChecks(dc, op, [X], [0])
self.assertGradientChecks(
gc, op, [X], 0, [0], stepsize=1e-4, threshold=1e-2)
@given(n=st.integers(0, 6), m=st.integers(4, 6), **hu.gcs) @given(n=st.integers(0, 6), m=st.integers(4, 6), **hu.gcs)
def test_eq(self, n, m, gc, dc): def test_eq(self, n, m, gc, dc):
# Set broadcast and no axis, i.e. broadcasting last dimensions. # Set broadcast and no axis, i.e. broadcasting last dimensions.