removing some redundant str splits (#106089)

drop some redundant string splits, no factual changes, just cleaning the codebase

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106089
Approved by: https://github.com/albanD, https://github.com/malfet
This commit is contained in:
Jirka Borovec 2023-09-01 00:22:55 +00:00 committed by PyTorch MergeBot
parent cc220e45a8
commit 9178deedff
18 changed files with 25 additions and 29 deletions

View File

@ -19,7 +19,7 @@ def parse_args():
"--local_rank",
type=int,
required=True,
help="The rank of the node for multi-node distributed " "training",
help="The rank of the node for multi-node distributed training",
)
return parser.parse_args()

View File

@ -32,7 +32,7 @@ class SqueezeNet(nn.Module):
super().__init__()
if version not in [1.0, 1.1]:
raise ValueError(
f"Unsupported SqueezeNet version {version}:" "1.0 or 1.1 expected"
f"Unsupported SqueezeNet version {version}:1.0 or 1.1 expected"
)
self.num_classes = num_classes
if version == 1.0:

View File

@ -360,19 +360,17 @@ class TestNestedTensor(TestCase):
@torch.inference_mode()
def test_repr_string(self):
a = torch.nested.nested_tensor([])
expected = "nested_tensor([" "\n\n])"
expected = "nested_tensor([\n\n])"
self.assertEqual(str(a), expected)
self.assertEqual(repr(a), expected)
a = torch.nested.nested_tensor([torch.tensor(1.0)])
expected = "nested_tensor([" "\n tensor(1.)" "\n])"
expected = "nested_tensor([\n tensor(1.)\n])"
self.assertEqual(str(a), expected)
self.assertEqual(repr(a), expected)
a = torch.nested.nested_tensor([torch.tensor([[1, 2]]), torch.tensor([[4, 5]])])
expected = (
"nested_tensor([" "\n tensor([[1, 2]])" "," "\n tensor([[4, 5]])" "\n])"
)
expected = "nested_tensor([\n tensor([[1, 2]]),\n tensor([[4, 5]])\n])"
self.assertEqual(str(a), expected)
self.assertEqual(repr(a), expected)

View File

@ -57,7 +57,7 @@ class WeakTest(TestCase):
self.assertIsNot(
value1,
value2,
"invalid test" " -- value parameters must be distinct objects",
"invalid test -- value parameters must be distinct objects",
)
weakdict = klass()
o = weakdict.setdefault(key, value1)

View File

@ -700,7 +700,7 @@ class TestMultiIndexingAutomated:
in_indices[i] = indx
elif indx.dtype.kind != "b" and indx.dtype.kind != "i":
raise IndexError(
"arrays used as indices must be of " "integer (or boolean) type"
"arrays used as indices must be of integer (or boolean) type"
)
if indx.ndim != 0:
no_copy = False

View File

@ -390,7 +390,7 @@ class AxisConcatenator:
newobj = newobj.swapaxes(-1, trans1d)
elif isinstance(item, str):
if k != 0:
raise ValueError("special directives must be the " "first entry.")
raise ValueError("special directives must be the first entry.")
if item in ("r", "c"):
matrix = True
col = item == "c"

View File

@ -2920,7 +2920,7 @@ class TestPercentile:
assert_equal(c1.shape, r1.shape)
@pytest.mark.xfail(
reason="numpy: x.dtype is int, out is int; " "torch: result is float"
reason="numpy: x.dtype is int, out is int; torch: result is float"
)
def test_scalar_q_2(self):
x = np.arange(12).reshape(3, 4)

View File

@ -566,7 +566,7 @@ class TestHistogramOptimBinNums:
assert_equal(
len(a),
numbins,
err_msg=f"{estimator} estimator, " "No Variance test",
err_msg=f"{estimator} estimator, No Variance test",
)
def test_limited_variance(self):

View File

@ -784,7 +784,7 @@ class TestCond(CondCases):
linalg.cond(A, p)
@pytest.mark.xfail(
True, run=False, reason="Platform/LAPACK-dependent failure, " "see gh-18914"
True, run=False, reason="Platform/LAPACK-dependent failure, see gh-18914"
)
def test_nan(self):
# nans should be passed through, not converted to infs

View File

@ -149,7 +149,7 @@ def main() -> None:
"--yaml_file_path",
type=str,
required=True,
help="Path to the yaml" " file with a list of operators used by the model.",
help="Path to the yaml file with a list of operators used by the model.",
)
parser.add_argument(
"-o",

View File

@ -343,7 +343,7 @@ def deps_install(deps: List[str], existing_env: bool, env_opts: List[str]) -> No
@timed("Installing pytorch nightly binaries")
def pytorch_install(url: str) -> "tempfile.TemporaryDirectory[str]":
""" "Install pytorch into a temporary directory"""
"""Install pytorch into a temporary directory"""
pytdir = tempfile.TemporaryDirectory()
cmd = ["conda", "create", "--yes", "--no-deps", "--prefix", pytdir.name, url]
p = subprocess.run(cmd, check=True)

View File

@ -405,12 +405,12 @@ def cond_func(pred, true_fn, false_fn, inputs):
for branch in [true_fn, false_fn]:
if _has_potential_branch_input_mutation(branch, unwrapped_inputs):
raise UnsupportedAliasMutationException(
"One of torch.cond branch " "might be modifying the input!"
"One of torch.cond branch might be modifying the input!"
)
if _has_potential_branch_input_alias(branch, unwrapped_inputs):
raise UnsupportedAliasMutationException(
"One of torch.cond branch " "might be aliasing the input!"
"One of torch.cond branch might be aliasing the input!"
)
cond_return = cond_op(
@ -443,12 +443,12 @@ def cond_functionalize(interpreter, pred, true_fn, false_fn, inputs):
for branch in [functional_true_fn, functional_false_fn]:
if _has_potential_branch_input_mutation(branch, unwrapped_inputs):
raise UnsupportedAliasMutationException(
"One of torch.cond branch " "might be modifying the input!"
"One of torch.cond branch might be modifying the input!"
)
for branch in [true_fn, false_fn]:
if _has_potential_branch_input_alias(branch, unwrapped_inputs):
raise UnsupportedAliasMutationException(
"One of torch.cond branch " "might be aliasing the input!"
"One of torch.cond branch might be aliasing the input!"
)
cond_return = cond_op(

View File

@ -1226,7 +1226,7 @@ def cross(a: ArrayLike, b: ArrayLike, axisa=-1, axisb=-1, axisc=-1, axis=None):
# Move working axis to the end of the shape
a = torch.moveaxis(a, axisa, -1)
b = torch.moveaxis(b, axisb, -1)
msg = "incompatible dimensions for cross product\n" "(dimension must be 2 or 3)"
msg = "incompatible dimensions for cross product\n(dimension must be 2 or 3)"
if a.shape[-1] not in (2, 3) or b.shape[-1] not in (2, 3):
raise ValueError(msg)

View File

@ -321,7 +321,7 @@ def average(
if a.shape != weights.shape:
if axis is None:
raise TypeError(
"Axis must be specified when shapes of a and weights " "differ."
"Axis must be specified when shapes of a and weights differ."
)
if weights.ndim != 1:
raise TypeError(

View File

@ -358,7 +358,7 @@ class _SingleLevelFunction(
if they are intended to be used for in ``jvp``.
"""
raise NotImplementedError(
"You must implement the forward function for custom" " autograd.Function."
"You must implement the forward function for custom autograd.Function."
)
@staticmethod

View File

@ -2043,9 +2043,9 @@ def _get_param_to_fqn(
"""
param_to_param_names = _get_param_to_fqns(model)
for param_names in param_to_param_names.values():
assert len(param_names) > 0, (
"`_get_param_to_fqns()` " "should not construct empty lists"
)
assert (
len(param_names) > 0
), "`_get_param_to_fqns()` should not construct empty lists"
if len(param_names) > 1:
raise RuntimeError(
"Each parameter should only map to one parameter name but got "

View File

@ -1060,7 +1060,7 @@ class ExprBuilder(Builder):
if isinstance(index_expr.value, ast.Tuple):
raise NotSupportedError(
base.range(),
"slicing multiple dimensions with " "tuples not supported yet",
"slicing multiple dimensions with tuples not supported yet",
)
return build_expr(ctx, index_expr.value)

View File

@ -44,9 +44,7 @@ def _sanity_check(name, package, level):
if not isinstance(package, str):
raise TypeError("__package__ not set to a string")
elif not package:
raise ImportError(
"attempted relative import with no known parent " "package"
)
raise ImportError("attempted relative import with no known parent package")
if not name and level == 0:
raise ValueError("Empty module name")