mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Fix unbind_copy and add its decomposition (#134319)
* Fixes https://github.com/pytorch/pytorch/issues/130829 Pull Request resolved: https://github.com/pytorch/pytorch/pull/134319 Approved by: https://github.com/amjames, https://github.com/eellison
This commit is contained in:
parent
cd9c6e9408
commit
8aedc649bd
|
|
@ -26,6 +26,7 @@
|
|||
#include <ATen/native/cpu/SerialStackImpl.h>
|
||||
#include <ATen/native/cpu/StackKernel.h>
|
||||
#include <ATen/quantized/QTensorImpl.h>
|
||||
#include <c10/core/GradMode.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <optional>
|
||||
#include <c10/util/SmallVector.h>
|
||||
|
|
@ -4071,29 +4072,41 @@ void split_copy_Tensor_out(const at::Tensor & self, int64_t split_size, int64_t
|
|||
}
|
||||
}
|
||||
|
||||
void split_with_sizes_copy_out(const at::Tensor & self, at::IntArrayRef split_sizes, int64_t dim, at::TensorList out) {
|
||||
auto tmp = self.split_with_sizes(split_sizes, dim);
|
||||
namespace {
|
||||
|
||||
TORCH_CHECK(out.size() == tmp.size(), "split_with_sizes_copy_out() expected an out= argument of size ", tmp.size(), ", got size ", out.size());
|
||||
void copy_tensor_array_to_out(const char* name, const std::vector<Tensor>& array, at::TensorList out) {
|
||||
TORCH_CHECK(out.size() == array.size(), name, " expected an out= argument of size ", array.size(), ", got size ", out.size());
|
||||
for (const auto i : c10::irange(out.size())) {
|
||||
if (resize_output_check(out[i], tmp[i].sizes())) {
|
||||
out[i].resize_(tmp[i].sizes());
|
||||
if (resize_output_check(out[i], array[i].sizes())) {
|
||||
out[i].resize_(array[i].sizes());
|
||||
}
|
||||
TORCH_CHECK(out[i].dtype() == tmp[i].dtype(),
|
||||
"Expected out tensor to have dtype ", tmp[i].dtype(), ", but got ", out[i].dtype(), " instead");
|
||||
TORCH_CHECK(out[i].device() == tmp[i].device(),
|
||||
"Expected out tensor to have device ", tmp[i].device(), ", but got ", out[i].device(), " instead");
|
||||
out[i].copy_(tmp[i]);
|
||||
TORCH_CHECK(out[i].dtype() == array[i].dtype(),
|
||||
"Expected out tensor to have dtype ", array[i].dtype(), ", but got ", out[i].dtype(), " instead");
|
||||
TORCH_CHECK(out[i].device() == array[i].device(),
|
||||
"Expected out tensor to have device ", array[i].device(), ", but got ", out[i].device(), " instead");
|
||||
out[i].copy_(array[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void unbind_copy_int_out(const at::Tensor & self, int64_t dim, at::TensorList out) {
|
||||
auto tmp = self.unbind(dim);
|
||||
}
|
||||
|
||||
TORCH_CHECK(out.size() == tmp.size(), "unbind_copy_int_out() expected an out= argument of size ", tmp.size(), ", got size ", out.size());
|
||||
for (const auto i : c10::irange(out.size())) {
|
||||
out[i].copy_(tmp[i]);
|
||||
void split_with_sizes_copy_out(const at::Tensor & self, at::IntArrayRef split_sizes, int64_t dim, at::TensorList out) {
|
||||
auto tmp = self.split_with_sizes(split_sizes, dim);
|
||||
copy_tensor_array_to_out("split_with_sizes_copy_out()", tmp, out);
|
||||
}
|
||||
|
||||
void unbind_copy_int_out(const at::Tensor & self, int64_t dim, at::TensorList out) {
|
||||
if (at::GradMode::is_enabled()) {
|
||||
for (const auto i : c10::irange(out.size())) {
|
||||
TORCH_CHECK(!out[i].requires_grad(),
|
||||
"unbind_copy(): functions with out=... arguments don't support automatic differentiation, "
|
||||
"but one of the arguments requires grad."
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
auto tmp = self.unbind(dim);
|
||||
copy_tensor_array_to_out("unbind_copy_int_out()", tmp, out);
|
||||
}
|
||||
|
||||
int64_t sparse_dim_default(const Tensor& self) {
|
||||
|
|
|
|||
|
|
@ -446,6 +446,7 @@ dtensor_fails = {
|
|||
xfail("trapz"),
|
||||
xfail("triangular_solve"),
|
||||
xfail("unbind"),
|
||||
xfail("unbind_copy"),
|
||||
xfail("unfold"),
|
||||
xfail("unfold_copy"),
|
||||
xfail("uniform"),
|
||||
|
|
|
|||
|
|
@ -506,6 +506,8 @@ aten::triu_indices.out
|
|||
aten::trunc
|
||||
aten::trunc.out
|
||||
aten::trunc_
|
||||
aten::unbind_copy.int
|
||||
aten::unbind_copy.int_out
|
||||
aten::unfold
|
||||
aten::uniform
|
||||
aten::uniform.out
|
||||
|
|
|
|||
|
|
@ -1292,8 +1292,6 @@ aten::topk.values
|
|||
aten::transpose_
|
||||
aten::triangular_solve
|
||||
aten::triangular_solve.X
|
||||
aten::unbind_copy.int
|
||||
aten::unbind_copy.int_out
|
||||
aten::unique_consecutive
|
||||
aten::unique_consecutive.out
|
||||
aten::unique_dim
|
||||
|
|
|
|||
|
|
@ -1038,6 +1038,9 @@ class TestOperators(TestCase):
|
|||
xfail("_native_batch_norm_legit"),
|
||||
# TODO: implement batching rule
|
||||
xfail("_batch_norm_with_update"),
|
||||
xfail(
|
||||
"unbind_copy"
|
||||
), # Batching rule not implemented for aten::unbind_copy.int.
|
||||
}
|
||||
),
|
||||
)
|
||||
|
|
@ -1177,6 +1180,9 @@ class TestOperators(TestCase):
|
|||
xfail("sparse.mm", "reduce"),
|
||||
xfail("as_strided_scatter", ""), # calls as_strided
|
||||
xfail("index_reduce", "prod"), # .item() call
|
||||
xfail(
|
||||
"unbind_copy"
|
||||
), # Batching rule not implemented for aten::unbind_copy.int.
|
||||
# ---------------------------------------------------------------------
|
||||
}
|
||||
)
|
||||
|
|
@ -1315,6 +1321,9 @@ class TestOperators(TestCase):
|
|||
xfail("_native_batch_norm_legit"),
|
||||
# TODO: implement batching rule
|
||||
xfail("_batch_norm_with_update"),
|
||||
xfail(
|
||||
"unbind_copy"
|
||||
), # Batching rule not implemented for aten::unbind_copy.int.
|
||||
# ----------------------------------------------------------------------
|
||||
}
|
||||
|
||||
|
|
@ -1628,6 +1637,9 @@ class TestOperators(TestCase):
|
|||
xfail("__getitem__", ""),
|
||||
xfail("index_put", ""),
|
||||
xfail("view_as_complex"),
|
||||
xfail(
|
||||
"unbind_copy"
|
||||
), # Batching rule not implemented for aten::unbind_copy.int.
|
||||
xfail("nn.functional.gaussian_nll_loss"),
|
||||
xfail("masked_select"),
|
||||
xfail(
|
||||
|
|
@ -1922,6 +1934,9 @@ class TestOperators(TestCase):
|
|||
xfail(
|
||||
"as_strided_scatter"
|
||||
), # AssertionError: Tensor-likes are not close!
|
||||
xfail(
|
||||
"unbind_copy"
|
||||
), # Batching rule not implemented for aten::unbind_copy.int.
|
||||
xfail("bernoulli"), # calls random op
|
||||
xfail("bfloat16"), # required rank 4 tensor to use channels_last format
|
||||
xfail("cdist"), # Forward AD not implemented and no decomposition
|
||||
|
|
|
|||
|
|
@ -4375,6 +4375,9 @@ class TestVmapOperatorsOpInfo(TestCase):
|
|||
xfail("torch.ops.aten._efficient_attention_forward"), # outputs ints
|
||||
# TypeError: expected Tensor as element 0 in argument 0, but got float
|
||||
xfail("item"),
|
||||
xfail(
|
||||
"unbind_copy"
|
||||
), # Batching rule not implemented for aten::unbind_copy.int.
|
||||
}
|
||||
),
|
||||
)
|
||||
|
|
@ -4450,6 +4453,9 @@ class TestVmapOperatorsOpInfo(TestCase):
|
|||
xfail("item"),
|
||||
xfail("tril"), # Exception not raised on error input
|
||||
xfail("triu"), # Exception not raised on error input
|
||||
xfail(
|
||||
"unbind_copy"
|
||||
), # Batching rule not implemented for aten::unbind_copy.int.
|
||||
xfail("__getitem__", ""),
|
||||
xfail("count_nonzero"),
|
||||
xfail(
|
||||
|
|
|
|||
|
|
@ -350,6 +350,7 @@ def mps_ops_modifier(ops):
|
|||
'transpose_copy',
|
||||
'T',
|
||||
'unbind',
|
||||
'unbind_copy',
|
||||
'unflatten',
|
||||
'unfold',
|
||||
'unfold_copy',
|
||||
|
|
|
|||
|
|
@ -241,6 +241,7 @@ GRADIENT_IMPLEMENTED_FOR_COMPLEX = {
|
|||
"slice",
|
||||
"constant_pad_nd",
|
||||
"unbind",
|
||||
"unbind_copy",
|
||||
"split",
|
||||
"split_with_sizes",
|
||||
"unsafe_split",
|
||||
|
|
|
|||
|
|
@ -83,6 +83,7 @@ inductor_decompositions = get_decompositions(
|
|||
aten._to_copy,
|
||||
aten.tril_indices,
|
||||
aten.triu_indices,
|
||||
aten.unbind_copy.int,
|
||||
aten.upsample_bilinear2d.vec,
|
||||
quantized.linear_dynamic_fp16_unpacked_weight,
|
||||
_quantized.wrapped_quantized_linear,
|
||||
|
|
|
|||
|
|
@ -129,6 +129,8 @@ class TorchRefsMode(torch.overrides.TorchFunctionMode):
|
|||
func = torch._decomp.decomposition_table.get(orig_func, None)
|
||||
elif func is None and isinstance(orig_func, torch._ops.OpOverloadPacket):
|
||||
default = getattr(orig_func, "default", None)
|
||||
if default is None and orig_func._dir:
|
||||
default = getattr(orig_func, orig_func._dir[0], None)
|
||||
if default is not None:
|
||||
func = torch._decomp.decomposition_table.get(default, None)
|
||||
|
||||
|
|
|
|||
|
|
@ -2,7 +2,16 @@
|
|||
import inspect
|
||||
import warnings
|
||||
from functools import wraps
|
||||
from typing import Callable, NamedTuple, Optional, overload, Sequence, Tuple, TypeVar
|
||||
from typing import (
|
||||
Callable,
|
||||
List,
|
||||
NamedTuple,
|
||||
Optional,
|
||||
overload,
|
||||
Sequence,
|
||||
Tuple,
|
||||
TypeVar,
|
||||
)
|
||||
from typing_extensions import ParamSpec
|
||||
|
||||
import torch
|
||||
|
|
@ -288,11 +297,17 @@ def out_wrapper(
|
|||
else:
|
||||
result = fn(*args, **kwargs)
|
||||
assert (
|
||||
isinstance(result, TensorLike)
|
||||
and is_tensor
|
||||
or isinstance(result, Tuple) # type: ignore[arg-type]
|
||||
and len(result) == len(out_names) # type: ignore[arg-type]
|
||||
(isinstance(result, TensorLike) and is_tensor)
|
||||
or (
|
||||
isinstance(result, Tuple) # type: ignore[arg-type]
|
||||
and len(result) == len(out_names) # type: ignore[arg-type]
|
||||
)
|
||||
or (
|
||||
fn.__name__ == "unbind"
|
||||
and isinstance(result, (List, Tuple)) # type: ignore[arg-type]
|
||||
)
|
||||
)
|
||||
# unbind_copy is a special case: see https://github.com/pytorch/pytorch/issues/130829
|
||||
if out is not None:
|
||||
# Naively you might expect this assert to be true, but
|
||||
# it's not:
|
||||
|
|
@ -310,7 +325,7 @@ def out_wrapper(
|
|||
# the output tensor, but not the result--which will
|
||||
# be a normal meta tensor, but this is perfectly
|
||||
# harmless.
|
||||
if is_tensor:
|
||||
if is_tensor and fn.__name__ != "unbind":
|
||||
assert isinstance(out, TensorLike)
|
||||
# These two operations are done in-place
|
||||
_maybe_resize_out(
|
||||
|
|
@ -318,7 +333,10 @@ def out_wrapper(
|
|||
)
|
||||
_safe_copy_out(copy_from=result, copy_to=out, exact_dtype=exact_dtype) # type: ignore[arg-type]
|
||||
else:
|
||||
assert isinstance(out, Tuple) # type: ignore[arg-type]
|
||||
if fn.__name__ != "unbind":
|
||||
assert isinstance(out, Tuple) # type: ignore[arg-type]
|
||||
else:
|
||||
assert isinstance(out, (List, Tuple)) # type: ignore[arg-type]
|
||||
torch._check_type(
|
||||
len(out) == len(result), # type: ignore[arg-type]
|
||||
lambda: f"expected tuple of {len(result)} elements but got {len(out)}", # type: ignore[arg-type]
|
||||
|
|
|
|||
|
|
@ -305,6 +305,7 @@ __all__ = [
|
|||
"tensor_split",
|
||||
"transpose",
|
||||
"transpose_copy",
|
||||
"unbind_copy",
|
||||
"unfold",
|
||||
"unfold_copy",
|
||||
"unsqueeze",
|
||||
|
|
@ -6382,6 +6383,7 @@ squeeze_copy = _make_copy_from_view(aten.squeeze)
|
|||
permute_copy = _make_copy_from_view(aten.permute)
|
||||
t_copy = _make_copy_from_view(aten.t)
|
||||
transpose_copy = _make_copy_from_view(aten.transpose)
|
||||
unbind_copy = _make_copy_from_view(aten.unbind)
|
||||
unsqueeze_copy = _make_copy_from_view(aten.unsqueeze)
|
||||
view_copy = _make_copy_from_view(aten.view)
|
||||
|
||||
|
|
|
|||
|
|
@ -19455,6 +19455,25 @@ op_db: List[OpInfo] = [
|
|||
supports_gradgrad=True,
|
||||
supports_out=False,
|
||||
),
|
||||
OpInfo('unbind_copy',
|
||||
dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.float16, torch.bfloat16),
|
||||
ref=reference_unbind,
|
||||
sample_inputs_func=sample_inputs_unbind,
|
||||
error_inputs_func=error_inputs_unbind,
|
||||
supports_forward_ad=True,
|
||||
supports_fwgrad_bwgrad=True,
|
||||
supports_gradgrad=True,
|
||||
supports_out=True,
|
||||
check_batched_grad=False,
|
||||
skips=(
|
||||
# Expected __torch_dispatch__ for aten::unbind_copy.int_out to return None
|
||||
# but it returned something else instead.
|
||||
DecorateInfo(
|
||||
unittest.expectedFailure,
|
||||
'TestProxyTensorOpInfo',
|
||||
'test_make_fx_symbolic_exhaustive_out'
|
||||
),
|
||||
)),
|
||||
OpInfo('vstack',
|
||||
aliases=('row_stack',),
|
||||
dtypes=all_types_and_complex_and(torch.complex32, torch.bool, torch.float16, torch.bfloat16),
|
||||
|
|
@ -24056,10 +24075,6 @@ python_ref_db = [
|
|||
PythonRefInfo(
|
||||
"_refs.transpose_copy",
|
||||
torch_opinfo_name="transpose_copy",
|
||||
skips=(
|
||||
# RuntimeError: no _refs support for torch.Tensor.is_conj
|
||||
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_python_ref'),
|
||||
),
|
||||
supports_out=True,
|
||||
),
|
||||
PythonRefInfo(
|
||||
|
|
@ -24076,6 +24091,10 @@ python_ref_db = [
|
|||
torch_opinfo_name="T",
|
||||
error_inputs_func=partial(error_inputs_T, has_ndims_error=True),
|
||||
),
|
||||
PythonRefInfo(
|
||||
"_refs.unbind_copy",
|
||||
torch_opinfo_name="unbind_copy",
|
||||
),
|
||||
PythonRefInfo(
|
||||
"_refs.unfold",
|
||||
torch_opinfo_name="unfold",
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user