mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
fix typo in adaptive methods annotation (#20306)
Summary: fixes #20215 The confusing behavior was caused by typos in type annotation :( Pull Request resolved: https://github.com/pytorch/pytorch/pull/20306 Differential Revision: D15276216 Pulled By: ailzhang fbshipit-source-id: 1b0c9635a72a05c9b537f80d85b117b5077fbec7
This commit is contained in:
parent
83a80d2b31
commit
899bddeeb6
|
|
@ -143,9 +143,8 @@ void adaptive_max_pool2d_out_cpu_template(
|
|||
AT_CHECK((input.ndimension() == 3 || input.ndimension() == 4),
|
||||
"non-empty 3D or 4D (batch mode) tensor expected for input");
|
||||
|
||||
// Issue #20215: the JIT sometimes passes output_size.size() == 1.
|
||||
AT_CHECK(output_size.size() == 1 || output_size.size() == 2,
|
||||
"adaptive_max_pool2d: internal error: output_size.size() must be 1 or 2");
|
||||
AT_CHECK(output_size.size() == 2,
|
||||
"adaptive_max_pool2d: internal error: output_size.size() must be 2");
|
||||
|
||||
if (input.ndimension() == 4)
|
||||
{
|
||||
|
|
@ -165,7 +164,7 @@ void adaptive_max_pool2d_out_cpu_template(
|
|||
istrideW = input.stride(dimW);
|
||||
|
||||
int64_t osizeH = output_size[0];
|
||||
int64_t osizeW = output_size.size() == 1 ? output_size[0] : output_size[1];
|
||||
int64_t osizeW = output_size[1];
|
||||
|
||||
/* resize output */
|
||||
if (input.ndimension() == 3)
|
||||
|
|
@ -367,6 +366,7 @@ std::tuple<Tensor, Tensor> adaptive_max_pool2d_cpu(
|
|||
{
|
||||
Tensor output = at::empty({0}, input.options());
|
||||
Tensor indices = at::empty({0}, input.options().dtype(kLong));
|
||||
AT_ASSERT(output_size.size() == 2);
|
||||
adaptive_max_pool2d_out_cpu_template(
|
||||
output,
|
||||
indices,
|
||||
|
|
|
|||
|
|
@ -165,9 +165,8 @@ void adaptive_max_pool3d_out_cpu_template(
|
|||
AT_CHECK((input.ndimension() == 4 || input.ndimension() == 5),
|
||||
"non-empty 4D or 5D (batch mode) tensor expected for input");
|
||||
|
||||
// Issue #20215: the JIT sometimes passes output_size.size() == 1.
|
||||
AT_CHECK(output_size.size() == 1 || output_size.size() == 3,
|
||||
"adaptive_max_pool3d: internal error: output_size.size() must be 1 or 3");
|
||||
AT_CHECK(output_size.size() == 3,
|
||||
"adaptive_max_pool3d: internal error: output_size.size() must be 3");
|
||||
|
||||
if (input.ndimension() == 5)
|
||||
{
|
||||
|
|
@ -191,8 +190,8 @@ void adaptive_max_pool3d_out_cpu_template(
|
|||
istrideW = input.stride(dimW);
|
||||
|
||||
int64_t osizeT = output_size[0];
|
||||
int64_t osizeH = output_size.size() == 1 ? output_size[0] : output_size[1];
|
||||
int64_t osizeW = output_size.size() == 1 ? output_size[0] : output_size[2];
|
||||
int64_t osizeH = output_size[1];
|
||||
int64_t osizeW = output_size[2];
|
||||
|
||||
/* resize output */
|
||||
if (input.ndimension() == 4)
|
||||
|
|
|
|||
|
|
@ -213,12 +213,11 @@ void adaptive_max_pool2d_out_cuda_template(
|
|||
AT_CHECK((input.ndimension() == 3 || input.ndimension() == 4),
|
||||
"non-empty 3D or 4D (batch mode) tensor expected for input");
|
||||
|
||||
// Issue #20215: the JIT sometimes passes output_size.size() == 1.
|
||||
AT_CHECK(output_size.size() == 1 || output_size.size() == 2,
|
||||
"adaptive_max_pool2d: internal error: output_size.size() must be 1 or 2");
|
||||
AT_CHECK(output_size.size() == 2,
|
||||
"adaptive_max_pool2d: internal error: output_size.size() must be 2");
|
||||
|
||||
int64_t osizeH = output_size[0];
|
||||
int64_t osizeW = output_size.size() == 1 ? output_size[0] : output_size[1];
|
||||
int64_t osizeW = output_size[1];
|
||||
|
||||
if (input.ndimension() == 3) {
|
||||
int64_t sizeD = input.size(0);
|
||||
|
|
@ -288,7 +287,7 @@ void adaptive_max_pool2d_out_cuda_template(
|
|||
indices_data,
|
||||
isizeH, isizeW, osizeH, osizeW,
|
||||
istrideD, istrideH, istrideW);
|
||||
}
|
||||
}
|
||||
);
|
||||
THCudaCheck(cudaGetLastError());
|
||||
|
||||
|
|
|
|||
|
|
@ -316,13 +316,12 @@ void adaptive_max_pool3d_out_cuda_template(
|
|||
AT_CHECK((input_.ndimension() == 4 || input_.ndimension() == 5),
|
||||
"non-empty 4D or 5D (batch mode) tensor expected for input");
|
||||
|
||||
// Issue #20215: the JIT sometimes passes output_size.size() == 1.
|
||||
AT_CHECK(output_size.size() == 1 || output_size.size() == 3,
|
||||
"adaptive_max_pool3d: internal error: output_size.size() must be 1 or 3");
|
||||
AT_CHECK(output_size.size() == 3,
|
||||
"adaptive_max_pool3d: internal error: output_size.size() must be 3");
|
||||
|
||||
int64_t osizeT = output_size[0];
|
||||
int64_t osizeH = output_size.size() == 1 ? output_size[0] : output_size[1];
|
||||
int64_t osizeW = output_size.size() == 1 ? output_size[0] : output_size[2];
|
||||
int64_t osizeH = output_size[1];
|
||||
int64_t osizeW = output_size[2];
|
||||
|
||||
int64_t sizeD, isizeT, isizeH, isizeW;
|
||||
int64_t istrideD, istrideT, istrideH, istrideW;
|
||||
|
|
|
|||
|
|
@ -697,7 +697,7 @@ adaptive_max_pool1d = torch._jit_internal.boolean_dispatch(
|
|||
|
||||
@weak_script
|
||||
def adaptive_max_pool2d_with_indices(input, output_size, return_indices=False):
|
||||
# type: (Tensor, BroadcastingList1[int], bool) -> Tuple[Tensor, Tensor]
|
||||
# type: (Tensor, BroadcastingList2[int], bool) -> Tuple[Tensor, Tensor]
|
||||
r"""Applies a 2D adaptive max pooling over an input signal composed of
|
||||
several input planes.
|
||||
|
||||
|
|
@ -714,7 +714,7 @@ def adaptive_max_pool2d_with_indices(input, output_size, return_indices=False):
|
|||
|
||||
@weak_script
|
||||
def _adaptive_max_pool2d(input, output_size, return_indices=False):
|
||||
# type: (Tensor, BroadcastingList1[int], bool) -> Tensor
|
||||
# type: (Tensor, BroadcastingList2[int], bool) -> Tensor
|
||||
return adaptive_max_pool2d_with_indices(input, output_size)[0]
|
||||
|
||||
adaptive_max_pool2d = torch._jit_internal.boolean_dispatch(
|
||||
|
|
@ -729,7 +729,7 @@ adaptive_max_pool2d = torch._jit_internal.boolean_dispatch(
|
|||
|
||||
@weak_script
|
||||
def adaptive_max_pool3d_with_indices(input, output_size, return_indices=False):
|
||||
# type: (Tensor, BroadcastingList1[int], bool) -> Tuple[Tensor, Tensor]
|
||||
# type: (Tensor, BroadcastingList3[int], bool) -> Tuple[Tensor, Tensor]
|
||||
r"""Applies a 3D adaptive max pooling over an input signal composed of
|
||||
several input planes.
|
||||
|
||||
|
|
@ -746,7 +746,7 @@ def adaptive_max_pool3d_with_indices(input, output_size, return_indices=False):
|
|||
|
||||
@weak_script
|
||||
def _adaptive_max_pool3d(input, output_size, return_indices=False):
|
||||
# type: (Tensor, BroadcastingList1[int], bool) -> Tensor
|
||||
# type: (Tensor, BroadcastingList3[int], bool) -> Tensor
|
||||
return adaptive_max_pool3d_with_indices(input, output_size)[0]
|
||||
|
||||
adaptive_max_pool3d = torch._jit_internal.boolean_dispatch(
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user