Remove unactivated test (#146233)

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146233
Approved by: https://github.com/rec, https://github.com/albanD
This commit is contained in:
cyy 2025-02-04 05:26:02 +00:00 committed by PyTorch MergeBot
parent e68f5087d8
commit 71e3575525

View File

@ -1,35 +1,26 @@
# mypy: ignore-errors # mypy: ignore-errors
# ruff: noqa: F841
# Owner(s): ["module: dataloader"] # Owner(s): ["module: dataloader"]
import copy import copy
import itertools import itertools
import importlib.util
import os import os
import os.path import os.path
import pickle import pickle
import pydoc import pydoc
import random import random
import sys
import tempfile import tempfile
import warnings import warnings
from functools import partial from functools import partial
from typing import ( from typing import (
Any, Any,
Generic,
Optional, Optional,
TYPE_CHECKING,
TypeVar, TypeVar,
Union, Union,
) )
from collections.abc import Awaitable, Iterator from collections.abc import Awaitable, Iterator
if not TYPE_CHECKING:
# pyre isn't treating this the same as a typing.NamedTuple
from typing_extensions import NamedTuple
else:
from typing import NamedTuple
import operator import operator
from unittest import skipIf from unittest import skipIf
@ -74,12 +65,7 @@ from torch.utils.data.graph import traverse_dps
dill = import_dill() dill = import_dill()
HAS_DILL = TEST_DILL HAS_DILL = TEST_DILL
try: HAS_PANDAS: bool = importlib.util.find_spec("pandas") is not None
import pandas # type: ignore[import] # noqa: F401 F403
HAS_PANDAS = True
except ImportError:
HAS_PANDAS = False
skipIfNoDataFrames = skipIf(not HAS_PANDAS, "no dataframes (pandas)") skipIfNoDataFrames = skipIf(not HAS_PANDAS, "no dataframes (pandas)")
skipTyping = skipIf(True, "TODO: Fix typing bug") skipTyping = skipIf(True, "TODO: Fix typing bug")
@ -418,13 +404,13 @@ class TestIterableDataPipeBasic(TestCase):
self.assertTrue(inp[1].closed) self.assertTrue(inp[1].closed)
cached = list(datapipe2) cached = list(datapipe2)
with warnings.catch_warnings(record=True) as wa: with warnings.catch_warnings(record=True):
datapipe3 = dp.iter.RoutedDecoder(cached, _png_decoder) datapipe3 = dp.iter.RoutedDecoder(cached, _png_decoder)
datapipe3.add_handler(decoder_basichandlers) datapipe3.add_handler(decoder_basichandlers)
_helper(cached, datapipe3) _helper(cached, datapipe3)
cached = list(datapipe2) cached = list(datapipe2)
with warnings.catch_warnings(record=True) as wa: with warnings.catch_warnings(record=True):
datapipe4 = dp.iter.RoutedDecoder(cached, decoder_basichandlers) datapipe4 = dp.iter.RoutedDecoder(cached, decoder_basichandlers)
datapipe4.add_handler(_png_decoder) datapipe4.add_handler(_png_decoder)
_helper(cached, datapipe4, channel_first=True) _helper(cached, datapipe4, channel_first=True)
@ -779,7 +765,7 @@ class TestFunctionalIterDataPipe(TestCase):
it1, it2 = iter(dp1), iter(dp2) it1, it2 = iter(dp1), iter(dp2)
_, _ = next(it1), next(it2) _, _ = next(it1), next(it2)
# Catch `fork`, `demux` "some child DataPipes are not exhausted" warning # Catch `fork`, `demux` "some child DataPipes are not exhausted" warning
with warnings.catch_warnings(record=True) as wa: with warnings.catch_warnings(record=True):
self._serialization_test_helper(dp1, use_dill) self._serialization_test_helper(dp1, use_dill)
self._serialization_test_helper(dp2, use_dill) self._serialization_test_helper(dp2, use_dill)
@ -788,7 +774,7 @@ class TestFunctionalIterDataPipe(TestCase):
it1 = iter(dp1) it1 = iter(dp1)
_ = list(it1) # fully read one child _ = list(it1) # fully read one child
# Catch `fork`, `demux` "some child DataPipes are not exhausted" warning # Catch `fork`, `demux` "some child DataPipes are not exhausted" warning
with warnings.catch_warnings(record=True) as wa: with warnings.catch_warnings(record=True):
self._serialization_test_helper(dp1, use_dill) self._serialization_test_helper(dp1, use_dill)
self._serialization_test_helper(dp2, use_dill) self._serialization_test_helper(dp2, use_dill)
@ -1319,7 +1305,7 @@ class TestFunctionalIterDataPipe(TestCase):
if n1 == 4: if n1 == 4:
break break
with warnings.catch_warnings(record=True) as wa: with warnings.catch_warnings(record=True) as wa:
i1 = iter(dp1) # Reset all child DataPipes iter(dp1) # Reset all child DataPipes
self.assertEqual(len(wa), 1) self.assertEqual(len(wa), 1)
self.assertRegex( self.assertRegex(
str(wa[0].message), r"Some child DataPipes are not exhausted" str(wa[0].message), r"Some child DataPipes are not exhausted"
@ -1899,7 +1885,7 @@ class TestFunctionalIterDataPipe(TestCase):
# Functional Test: filter function must return bool # Functional Test: filter function must return bool
filter_dp = input_ds.filter(filter_fn=_non_bool_fn) filter_dp = input_ds.filter(filter_fn=_non_bool_fn)
with self.assertRaises(ValueError): with self.assertRaises(ValueError):
temp = list(filter_dp) list(filter_dp)
# Funtional Test: Specify input_col # Funtional Test: Specify input_col
tuple_input_ds = dp.iter.IterableWrapper([(d - 1, d, d + 1) for d in range(10)]) tuple_input_ds = dp.iter.IterableWrapper([(d - 1, d, d + 1) for d in range(10)])
@ -1965,9 +1951,9 @@ class TestFunctionalIterDataPipe(TestCase):
self.assertEqual(x, i) self.assertEqual(x, i)
# RandomSampler # RandomSampler
random_sampled_dp = dp.iter.Sampler( dp.iter.Sampler(
input_dp, sampler=RandomSampler, sampler_kwargs={"replacement": True} input_dp, sampler=RandomSampler, sampler_kwargs={"replacement": True}
) # type: ignore[var-annotated] # noqa: B950 )
# Requires `__len__` to build SamplerDataPipe # Requires `__len__` to build SamplerDataPipe
input_dp_nolen = IDP_NoLen(range(10)) input_dp_nolen = IDP_NoLen(range(10))
@ -1998,7 +1984,7 @@ class TestFunctionalIterDataPipe(TestCase):
input_dp = dp.iter.IterableWrapper(list(range(10))) input_dp = dp.iter.IterableWrapper(list(range(10)))
with self.assertRaises(AssertionError): with self.assertRaises(AssertionError):
shuffle_dp = input_dp.shuffle(buffer_size=0) input_dp.shuffle(buffer_size=0)
# Functional Test: No seed # Functional Test: No seed
shuffler_dp = input_dp.shuffle() shuffler_dp = input_dp.shuffle()
@ -2035,7 +2021,6 @@ class TestFunctionalIterDataPipe(TestCase):
# __len__ Test: returns the length of the input DataPipe # __len__ Test: returns the length of the input DataPipe
shuffler_dp = input_dp.shuffle() shuffler_dp = input_dp.shuffle()
self.assertEqual(10, len(shuffler_dp)) self.assertEqual(10, len(shuffler_dp))
exp = list(range(100))
# Serialization Test # Serialization Test
from torch.utils.data.datapipes._hook_iterator import _SnapshotState from torch.utils.data.datapipes._hook_iterator import _SnapshotState
@ -2403,16 +2388,6 @@ class TestFunctionalMapDataPipe(TestCase):
self.assertEqual(2, len(batch_dp_2)) self.assertEqual(2, len(batch_dp_2))
# Metaclass conflict for Python 3.6
# Multiple inheritance with NamedTuple is not supported for Python 3.9
_generic_namedtuple_allowed = sys.version_info >= (3, 7) and sys.version_info < (3, 9)
if _generic_namedtuple_allowed:
class InvalidData(NamedTuple, Generic[T_co]):
name: str
data: T_co
class TestTyping(TestCase): class TestTyping(TestCase):
def test_isinstance(self): def test_isinstance(self):
class A(IterDataPipe): class A(IterDataPipe):
@ -2548,14 +2523,6 @@ class TestTyping(TestCase):
def __iter__(self) -> Iterator[tuple]: # type: ignore[override] def __iter__(self) -> Iterator[tuple]: # type: ignore[override]
yield (0,) yield (0,)
if _generic_namedtuple_allowed:
with self.assertRaisesRegex(
TypeError, r"is not supported by Python typing"
):
class InvalidDP4(IterDataPipe["InvalidData[int]"]): # type: ignore[type-arg, misc]
pass
class DP1(IterDataPipe[tuple[int, str]]): class DP1(IterDataPipe[tuple[int, str]]):
def __init__(self, length): def __init__(self, length):
self.length = length self.length = length
@ -2679,7 +2646,7 @@ class TestTyping(TestCase):
with self.assertRaisesRegex( with self.assertRaisesRegex(
TypeError, r"Expected type of argument 'dp' as a subtype" TypeError, r"Expected type of argument 'dp' as a subtype"
): ):
dp1 = DP1(dp0) DP1(dp0)
@skipTyping @skipTyping
def test_runtime(self): def test_runtime(self):
@ -2740,13 +2707,13 @@ class TestTyping(TestCase):
# Invalid type # Invalid type
with self.assertRaisesRegex(TypeError, r"'expected_type' must be a type"): with self.assertRaisesRegex(TypeError, r"'expected_type' must be a type"):
dp1 = DP(ds).reinforce_type(1) DP(ds).reinforce_type(1)
# Type is not subtype # Type is not subtype
with self.assertRaisesRegex( with self.assertRaisesRegex(
TypeError, r"Expected 'expected_type' as subtype of" TypeError, r"Expected 'expected_type' as subtype of"
): ):
dp2 = DP(ds).reinforce_type(float) DP(ds).reinforce_type(float)
# Invalid data at runtime # Invalid data at runtime
dp3 = DP(ds).reinforce_type(str) dp3 = DP(ds).reinforce_type(str)