mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Remove unactivated test (#146233)
Fixes #ISSUE_NUMBER Pull Request resolved: https://github.com/pytorch/pytorch/pull/146233 Approved by: https://github.com/rec, https://github.com/albanD
This commit is contained in:
parent
e68f5087d8
commit
71e3575525
|
|
@ -1,35 +1,26 @@
|
|||
# mypy: ignore-errors
|
||||
# ruff: noqa: F841
|
||||
|
||||
# Owner(s): ["module: dataloader"]
|
||||
|
||||
import copy
|
||||
import itertools
|
||||
import importlib.util
|
||||
import os
|
||||
import os.path
|
||||
import pickle
|
||||
import pydoc
|
||||
import random
|
||||
import sys
|
||||
import tempfile
|
||||
import warnings
|
||||
from functools import partial
|
||||
from typing import (
|
||||
Any,
|
||||
Generic,
|
||||
Optional,
|
||||
TYPE_CHECKING,
|
||||
TypeVar,
|
||||
Union,
|
||||
)
|
||||
from collections.abc import Awaitable, Iterator
|
||||
|
||||
if not TYPE_CHECKING:
|
||||
# pyre isn't treating this the same as a typing.NamedTuple
|
||||
from typing_extensions import NamedTuple
|
||||
else:
|
||||
from typing import NamedTuple
|
||||
|
||||
import operator
|
||||
from unittest import skipIf
|
||||
|
||||
|
|
@ -74,12 +65,7 @@ from torch.utils.data.graph import traverse_dps
|
|||
dill = import_dill()
|
||||
HAS_DILL = TEST_DILL
|
||||
|
||||
try:
|
||||
import pandas # type: ignore[import] # noqa: F401 F403
|
||||
|
||||
HAS_PANDAS = True
|
||||
except ImportError:
|
||||
HAS_PANDAS = False
|
||||
HAS_PANDAS: bool = importlib.util.find_spec("pandas") is not None
|
||||
skipIfNoDataFrames = skipIf(not HAS_PANDAS, "no dataframes (pandas)")
|
||||
|
||||
skipTyping = skipIf(True, "TODO: Fix typing bug")
|
||||
|
|
@ -418,13 +404,13 @@ class TestIterableDataPipeBasic(TestCase):
|
|||
self.assertTrue(inp[1].closed)
|
||||
|
||||
cached = list(datapipe2)
|
||||
with warnings.catch_warnings(record=True) as wa:
|
||||
with warnings.catch_warnings(record=True):
|
||||
datapipe3 = dp.iter.RoutedDecoder(cached, _png_decoder)
|
||||
datapipe3.add_handler(decoder_basichandlers)
|
||||
_helper(cached, datapipe3)
|
||||
|
||||
cached = list(datapipe2)
|
||||
with warnings.catch_warnings(record=True) as wa:
|
||||
with warnings.catch_warnings(record=True):
|
||||
datapipe4 = dp.iter.RoutedDecoder(cached, decoder_basichandlers)
|
||||
datapipe4.add_handler(_png_decoder)
|
||||
_helper(cached, datapipe4, channel_first=True)
|
||||
|
|
@ -779,7 +765,7 @@ class TestFunctionalIterDataPipe(TestCase):
|
|||
it1, it2 = iter(dp1), iter(dp2)
|
||||
_, _ = next(it1), next(it2)
|
||||
# Catch `fork`, `demux` "some child DataPipes are not exhausted" warning
|
||||
with warnings.catch_warnings(record=True) as wa:
|
||||
with warnings.catch_warnings(record=True):
|
||||
self._serialization_test_helper(dp1, use_dill)
|
||||
self._serialization_test_helper(dp2, use_dill)
|
||||
|
||||
|
|
@ -788,7 +774,7 @@ class TestFunctionalIterDataPipe(TestCase):
|
|||
it1 = iter(dp1)
|
||||
_ = list(it1) # fully read one child
|
||||
# Catch `fork`, `demux` "some child DataPipes are not exhausted" warning
|
||||
with warnings.catch_warnings(record=True) as wa:
|
||||
with warnings.catch_warnings(record=True):
|
||||
self._serialization_test_helper(dp1, use_dill)
|
||||
self._serialization_test_helper(dp2, use_dill)
|
||||
|
||||
|
|
@ -1319,7 +1305,7 @@ class TestFunctionalIterDataPipe(TestCase):
|
|||
if n1 == 4:
|
||||
break
|
||||
with warnings.catch_warnings(record=True) as wa:
|
||||
i1 = iter(dp1) # Reset all child DataPipes
|
||||
iter(dp1) # Reset all child DataPipes
|
||||
self.assertEqual(len(wa), 1)
|
||||
self.assertRegex(
|
||||
str(wa[0].message), r"Some child DataPipes are not exhausted"
|
||||
|
|
@ -1899,7 +1885,7 @@ class TestFunctionalIterDataPipe(TestCase):
|
|||
# Functional Test: filter function must return bool
|
||||
filter_dp = input_ds.filter(filter_fn=_non_bool_fn)
|
||||
with self.assertRaises(ValueError):
|
||||
temp = list(filter_dp)
|
||||
list(filter_dp)
|
||||
|
||||
# Funtional Test: Specify input_col
|
||||
tuple_input_ds = dp.iter.IterableWrapper([(d - 1, d, d + 1) for d in range(10)])
|
||||
|
|
@ -1965,9 +1951,9 @@ class TestFunctionalIterDataPipe(TestCase):
|
|||
self.assertEqual(x, i)
|
||||
|
||||
# RandomSampler
|
||||
random_sampled_dp = dp.iter.Sampler(
|
||||
dp.iter.Sampler(
|
||||
input_dp, sampler=RandomSampler, sampler_kwargs={"replacement": True}
|
||||
) # type: ignore[var-annotated] # noqa: B950
|
||||
)
|
||||
|
||||
# Requires `__len__` to build SamplerDataPipe
|
||||
input_dp_nolen = IDP_NoLen(range(10))
|
||||
|
|
@ -1998,7 +1984,7 @@ class TestFunctionalIterDataPipe(TestCase):
|
|||
input_dp = dp.iter.IterableWrapper(list(range(10)))
|
||||
|
||||
with self.assertRaises(AssertionError):
|
||||
shuffle_dp = input_dp.shuffle(buffer_size=0)
|
||||
input_dp.shuffle(buffer_size=0)
|
||||
|
||||
# Functional Test: No seed
|
||||
shuffler_dp = input_dp.shuffle()
|
||||
|
|
@ -2035,7 +2021,6 @@ class TestFunctionalIterDataPipe(TestCase):
|
|||
# __len__ Test: returns the length of the input DataPipe
|
||||
shuffler_dp = input_dp.shuffle()
|
||||
self.assertEqual(10, len(shuffler_dp))
|
||||
exp = list(range(100))
|
||||
|
||||
# Serialization Test
|
||||
from torch.utils.data.datapipes._hook_iterator import _SnapshotState
|
||||
|
|
@ -2403,16 +2388,6 @@ class TestFunctionalMapDataPipe(TestCase):
|
|||
self.assertEqual(2, len(batch_dp_2))
|
||||
|
||||
|
||||
# Metaclass conflict for Python 3.6
|
||||
# Multiple inheritance with NamedTuple is not supported for Python 3.9
|
||||
_generic_namedtuple_allowed = sys.version_info >= (3, 7) and sys.version_info < (3, 9)
|
||||
if _generic_namedtuple_allowed:
|
||||
|
||||
class InvalidData(NamedTuple, Generic[T_co]):
|
||||
name: str
|
||||
data: T_co
|
||||
|
||||
|
||||
class TestTyping(TestCase):
|
||||
def test_isinstance(self):
|
||||
class A(IterDataPipe):
|
||||
|
|
@ -2548,14 +2523,6 @@ class TestTyping(TestCase):
|
|||
def __iter__(self) -> Iterator[tuple]: # type: ignore[override]
|
||||
yield (0,)
|
||||
|
||||
if _generic_namedtuple_allowed:
|
||||
with self.assertRaisesRegex(
|
||||
TypeError, r"is not supported by Python typing"
|
||||
):
|
||||
|
||||
class InvalidDP4(IterDataPipe["InvalidData[int]"]): # type: ignore[type-arg, misc]
|
||||
pass
|
||||
|
||||
class DP1(IterDataPipe[tuple[int, str]]):
|
||||
def __init__(self, length):
|
||||
self.length = length
|
||||
|
|
@ -2679,7 +2646,7 @@ class TestTyping(TestCase):
|
|||
with self.assertRaisesRegex(
|
||||
TypeError, r"Expected type of argument 'dp' as a subtype"
|
||||
):
|
||||
dp1 = DP1(dp0)
|
||||
DP1(dp0)
|
||||
|
||||
@skipTyping
|
||||
def test_runtime(self):
|
||||
|
|
@ -2740,13 +2707,13 @@ class TestTyping(TestCase):
|
|||
|
||||
# Invalid type
|
||||
with self.assertRaisesRegex(TypeError, r"'expected_type' must be a type"):
|
||||
dp1 = DP(ds).reinforce_type(1)
|
||||
DP(ds).reinforce_type(1)
|
||||
|
||||
# Type is not subtype
|
||||
with self.assertRaisesRegex(
|
||||
TypeError, r"Expected 'expected_type' as subtype of"
|
||||
):
|
||||
dp2 = DP(ds).reinforce_type(float)
|
||||
DP(ds).reinforce_type(float)
|
||||
|
||||
# Invalid data at runtime
|
||||
dp3 = DP(ds).reinforce_type(str)
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user